# Extending the Johnson-Neyman Procedure to Categorical Independent Variables: Mathematical Derivations and Computational Tools

### A Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts in the Graduate School of The Ohio State University

By

Amanda Kay Montoya, B.S.

Graduate Program in Psychology

The Ohio State University

2016

Master's Examination Committee:

Andrew F. Hayes, Advisor Michael C. Edwards Duane T. Wegener © Copyright by

Amanda Kay Montoya

2016

#### Abstract

Moderation analysis is used throughout many scientific fields, including psychology and other social sciences, to model contingencies in the relationship between some independent variable (X) and some outcome variable (Y) as a function of some other variable, typically called a moderator (M). Inferential methods for testing moderation provide only a simple yes/no decision about whether the relationship is contingent. These contingencies can often be complicated. Researcher often need to look closer. Probing the relationship between X and Y at different values of the moderator provides the researcher with a better understanding of how the relationship changes across the moderator. There are two popular methods for probing an interaction: simple slopes analysis and the Johnson-Neyman procedure. The Johnson-Neyman procedure is used to identify the point(s) along a continuous moderator where the relationship between the independent variable and the outcome variable transition(s) between being statistically significant to nonsignificant or vice versa. Implementation of the Johnson-Neyman procedure when X is either dichotomous of continuous is well described in the literature; however, when X is a multicategorical variable it is not clear how to implement this method. I begin with a review of moderation and popular probing techniques for dichotomous and continuous X. Next, I derive the Johnson-Neyman solutions for three groups and continue with a partial derivation for four groups. Solutions for the four-group derivation rely on finding the roots of an eighth-degree polynomial for which there is no algebraic solution. I provide an iterative computer program for SPSS and SAS that solves for the Johnson-Neyman boundaries for any number of groups. I describe the performance of this program, relative to known solutions, and typical run-times under a variety of circumstances. Using a real dataset, I show how to analyze data using the tool and how to interpret the results. I conclude with some consideration about when to use and when not to use this tool, future directions, and general conclusions.

This thesis is dedicated to my friends and family who have supported me in all my various dreams. Particularly to my mother Lori for always seeing the best in me and my best friend Colleen for being a rock and support through the toughest times in life. Even though we are far apart you are always close to my heart.

### Acknowledgments

I would like to thank my committee members for their detailed feedback and questions, particularly my advisor Dr. Hayes for suggesting this topic and guiding me through the research process. I would like to thank the attendees of the Quantitative Psychology Graduate Student Meeting for their helpful feedback, particularly in the early stages of development. Special thanks to J. R. R. Tolkien for inspiring the name of the tool.

### Vita

| May 8, 1991  | Born                                                |
|--------------|-----------------------------------------------------|
|              | Seattle, WA                                         |
| 2011         | A.A. Psychology,<br>North Seattle Community College |
| 2013         | B.S. Psychology<br>University of Washington         |
| 2014-present | Graduate Fellow,<br>Holstein University.            |

## Fields of Study

Major Field: Psychology

## Table of Contents

| I                                                     | <b>'</b> age |
|-------------------------------------------------------|--------------|
| Abstract                                              | ii           |
| Dedication                                            | iv           |
| Acknowledgments                                       | v            |
| Vita                                                  | vi           |
| List of Tables                                        | х            |
| List of Figures                                       | xi           |
| 1. Introduction                                       | 1            |
| 2. Linear Moderation Analysis in OLS Regression       | 5            |
| 2.1 Inference about Moderation                        | 5            |
| 2.2 Probing Moderation Effects                        | 10           |
| 2.2.1 Simple-Slopes Analysis                          | 10           |
| 2.2.2 The Johnson-Neyman Procedure                    | 13           |
| 2.2.3 Tools for Probing                               | 18           |
| 3. Moderation of the Effect of a Categorical Variable | 20           |
| 3.1 Inference about Moderation                        | 21           |
| 3.2 Probing Moderation Effects                        | 23           |
| 3.2.1 Simple-Slopes Analysis                          | 24           |

| 4.   | Derivations of the Johnson-Neyman Procedure for Multiple Groups 2                                                                                                         | 28          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      | 4.1Three Groups24.2Four Groups3                                                                                                                                           | 29<br>15    |
| 5.   | OGRS: An Iterative Tool for Finding Johnson-Neyman Regions of Signif-<br>icance for Omnibus Group Differences                                                             | 10          |
|      | 5.1       Program Inputs       4         5.1.1       Required Inputs       4         5.1.2       Optional Inputs       4         5.1.3       Command Line Example       4 | 1<br>1<br>1 |
|      | 5.2 Internal Processes                                                                                                                                                    | 15          |
|      | 5.2.1 Regression Results $\dots \dots \dots$                              | 15          |
|      | 5.2.2 Finding Johnson-Neyman Solutions                                                                                                                                    | 20<br>50    |
|      | 5.4 Programming Decisions                                                                                                                                                 | 51          |
|      | 5.5 Program Performance                                                                                                                                                   | 53          |
|      | $5.5.1$ Accuracy $\ldots$ $5.5.1$                                                                                                                                         | 53          |
|      | 5.5.2 Run Time $\ldots$ 5                                                                                                                                                 | <i>•</i> 6  |
| 6.   | Party Differences in Support of Government Action to Mitigate Climate<br>Change                                                                                           | 54          |
|      |                                                                                                                                                                           |             |
| 7.   | Discussion                                                                                                                                                                | '2          |
|      | 7.1 Uses and Non-Uses                                                                                                                                                     | '3          |
|      | 7.2 Future Directions                                                                                                                                                     | '3<br>76    |
|      |                                                                                                                                                                           | U           |
| Refe | rences                                                                                                                                                                    | '8          |
| Ap   | pendices                                                                                                                                                                  |             |
| А.   | OGRS Macro for SPSS                                                                                                                                                       | 32          |
| В.   | OGRS Macro Documentation for SPSS                                                                                                                                         | )0          |
|      | B.1 Overview                                                                                                                                                              | )0          |

|    | B.2 Preparation for Use                                                                                                                 | 91 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|----|
|    | B.3 Model Specification                                                                                                                 | 91 |
|    | B.4 Confidence Level                                                                                                                    | 92 |
|    | B.5 Convergence Criteria                                                                                                                | 93 |
|    | B.6 Initial Iterations                                                                                                                  | 93 |
|    | B.7 Decimals                                                                                                                            | 93 |
| C. | OGRS Macro for SAS                                                                                                                      | 95 |
| D. | OGRS Macro Documentation for SAS 1                                                                                                      | 02 |
|    | D.1 Overview                                                                                                                            | 02 |
|    | D.2 Preparation for Use 1                                                                                                               | 03 |
|    | D.3 Model Specification                                                                                                                 | 03 |
|    | D.4 Confidence Level                                                                                                                    | 04 |
|    | D.5 Convergence Criteria                                                                                                                | 05 |
|    | D.6 Initial Iterations                                                                                                                  | 05 |
|    | D.7 Decimals $\ldots \ldots 1$ | 06 |

## List of Tables

| Tab | le                                                                           | Pa | ıge |
|-----|------------------------------------------------------------------------------|----|-----|
| 5.1 | Accuracy of OGRS Johnson-Neyman Solutions for SPSS and SAS $% \mathcal{A}$ . | •  | 57  |
| 5.2 | Run Time in Seconds for OGRS with Three Groups                               |    | 61  |
| 5.3 | Run Time in Seconds for OGRS with Five Groups                                |    | 62  |
| 5.4 | Run Time in Seconds for OGRS with Seven Groups                               | •  | 63  |

# List of Figures

| Figu | ıre                                                                                       | Page |
|------|-------------------------------------------------------------------------------------------|------|
| 6.1  | OGRS Output for SPSS: Global Data                                                         | 67   |
| 6.2  | OGRS Output for SAS: Global Data                                                          | 68   |
| 6.3  | Graph of Predicted Support for Government Action across Party Iden-<br>tification and Age | 69   |

### Chapter 1: Introduction

When a researcher believes that the relationship between an independent variable (X) and an outcome (Y) may depend on some other variable (M) they can test this hypotheses by allowing for moderation of the effect of X on Y by M in a regression analysis. For example, Kim and Baek (2014) were interested in if people's selective self-presentation online (X) predicted their online life satisfaction (Y), and if this relationship depended on self-esteem (M). Indeed, they found that selective self-presentation online predicted increased online life satisfaction, and this relationship was larger among those with low self-esteem than those with high self-esteem. Siy and Cheryan (2013) studied how Asian Americans reacted to positive stereotypes based on their Asian culture. They found that those who had an independent self-construal (M) as compared to an interdependent self-construal, reactived more negatively (Y) when they were positively stereotyped (X). In this study self-construal, the moderator, was measured on a single scale which ranged from interdependent to independent.

Research often begins with a simple correlation question: "Does this relate to that?". As a research area develops, these questions may gain some nuance, such as whether or not two things are *always* related in the same way, or does the relationship depend on other variables. Questions about contingencies help define boundary conditions for the relationships between variables. These types of analysis can provide explanations for seemingly contradictory results. For example, Campbell (1990) found that boys had more positive attitudes towards computers than girls. However, DeRemer (1989) found that girls had more positive attitudes toward computers than boys. One major difference between these two studies is the age of students sampled. Campbell (1990) looked at high school students and DeRemer (1989) examined students in grades three and six. A single study which sampled students from a variety of grades could show that the relationship between gender and computer attitudes varies with age or school grade, as was shown in a meta-analysis by Whitley Jr. (1997).

Researchers throughout psychology are often interested in moderators such as situational variables, individual differences, and experimental conditions. Using moderation analysis allows researchers to more clearly understand under what conditions certain effects occur or do not occur, how their magnitude varies, and how their direction can change. Moderation analyses are important not only for improving theory, but also for improving practical applications. For example, given the results of a moderation analysis, it has been suggested that practitioners can assign individuals to treatments, such as educational classes, where they are predicted to have the most beneficial outcomes given their scores on the moderator (Forster, 1971).

Statistical moderation analysis has been used in psychology for many years and is taught in introductory regression classes to most graduate students in the field. Many books have been written on the topic of moderation and interactions (e.g., Jaccard & Turrisi, 2003; Aiken & West, 1991) and complete chapters and full sections of introductory regression and statistics books are dedicated to this topic (e.g., Cohen, Cohen, West, & Aiken, 2003; Field, 2013; Darlington & Hayes, 2017; Hayes, 2013; Howell, 2007). Researchers also often use statistical methods to probe interactions to better understand the nature of the contingent effect they are interested in. By expanding methods for probing interactions this thesis provides additional tools for psychology researchers to answer the questions they are interested in.

The aim of this thesis is to provide a tool to help researchers probe moderated relationships when the independent variable of interest is categorical, particularly having three or more categories, using the Johnson-Neyman procedure. Moderation analysis involves both inferential methods for decisions of moderation or no moderation and probing methods for investigating the nature of the moderated relationship. The topic of moderation with categorical independent variables has been discussed in a variety of books and publications (e.g., Cohen et al., 2003; Huitema, 1980; Spiller, Fitzimons, Lynch Jr., & McClelland, 2013); however, probing methods for categorical predictors are less frequently discussed. Common probing methods for examining moderated relationships include two approaches: the simple slopes approach and the Johnson-Neyman procedure. Some researchers have discussed how to apply the simple slopes approach for moderated relationships with categorical independent variables and either dichotomous or continuous moderators (Hayes, 2013; Spiller et al., 2013). The primary contribution of this thesis is to describe how the the Johnson-Neyman procedure can be generalized to situations where the independent variable is categorical and the moderator is continuous. This case is particularly of interest to researchers focused on the effect of the independent variable on the outcome at different values of the moderator, rather than an estimate of the effect of the moderator on the outcome at each level of the independent variable.

I begin with an overview of the procedures for testing moderation as well as the two methods for probing moderated relationships: simple slopes analysis and the Johnson-Neyman procedure. I will focus on a model comparison approach, using ordinary least squares (OLS) for model estimation. I will then give a brief discussion of the historical development of the Johnson-Neyman procedure. I continue by describing how to estimate competing models in order to test moderation hypotheses with categorical independent variables and implementation of the simple slopes method in these cases. I then provide an analytical derivation of the Johnson-Neyman procedure with a 3group categorical variable and then start the derivation for a 4-group categorical variable. As the number of groups (k) increases, the Johnson-Neyman procedure relies on finding the roots of a  $2^{k-1}$  degree polynomial. By the Abel-Ruffini theorem, there are no general algebraic solutions for polynomial equations of degree five or higher (Abel, 1824; Ruffini, 1799), meaning Johnson-Neyman solutions do not have closed forms and cannot be found using traditional methods. I propose an iterative computational method which finds the Johnson-Neyman solutions, and will provide a tool, OGRS, to make this analysis easy to do using SPSS or SAS. I will illustrate how to use this tool and interpret the results using two examples of real data from psychology.

#### Chapter 2: Linear Moderation Analysis in OLS Regression

Moderation analysis using ordinary least squares regression (OLS) has two major parts. First, a researchers tests if there is sufficient evidence that the relationship between the independent variable and the outcome depends on some moderator. If evidence of moderation in found, researchers often *probe* the interaction in order to better understand and visualize the contingent relationship. This practice is much like the practice of examining simple effects in ANOVA. In this chapter I describe common methods for both inference about moderation and probing interactions in linear moderation analysis using OLS regression.

#### 2.1 Inference about Moderation

Though moderation can be tested in a variety of ways, the focus of this paper will be using OLS regression for model estimation. Linear moderation is traditionally tested by estimating and comparing the fit of two models, one with no contingent relationships and one which allows for contingent relationships.

Model 1:  $Y_i = b_0^* + b_1^* X_i + b_2^* M_i + \epsilon_i^*$  where  $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^{*2})$ Model 2:  $Y_i = b_0 + \Theta_{X \to Y|M} X_i + b_2 M_i + \epsilon_i$  where  $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ 

$$\Theta_{X \to Y|M} = b_1 + b_3 M_i$$

In Models 1 and 2, Y is a continuous outcome variable which is being predicted. The predictor variables in the models are X and M's. Within the context of moderation, it is often helpful to frame the problem with respect to an independent variable, the variable whose effect on Y is of interest, and a moderator, the variable which is believed to influence the independent variable's effect on Y. I will use X as the independent variable and M as the moderator variable throughout. In Model 1,  $b_0^*$ ,  $b_1^*$ , and  $b_2^*$ , are the population regression coefficients. In Model 2,  $b_0$ ,  $b_1$ ,  $b_2$ , and  $b_3$ are the population regression coefficients. The stars in Model 1 are meant to indicate that the coefficients are different from the coefficients in Model 2. In Model 1 the effect of X on Y is not contingent on M but, rather, is constant,  $b_1^*$ . In Model 2 however, the effect of X on Y is  $\Theta_{X \to Y|M}$ , the conditional effect of X on Y at some value of M, which is defined as a linear function of M. In this way, X's effect on Y depends on M, and is allowing for a certain type of moderation, *linear* moderation. The effect  $\Theta_{X \to Y|M}$  could be any defined function of M, such as a quadratic function, but because linear moderation is most common in psychology, this thesis will focus solely on linear moderation. Also note that the error terms in these equations are assumed to be normally distributed with a constant variance  $\sigma^2$  or  $\sigma^{*2}$ . This will be the case throughout this thesis but to avoid needless repetition this notation will be omitted in future equations.

Model 1 is nested within Model 2. Specifically, if the  $b_3$  parameter is zero in the population, then Model 2 simplifies to Model 1. This can be shown by plugging  $\Theta_{X \to Y|M}$  into the equation for Model 2 and expanding terms:

$$Y_i = b_0 + b_1 X_i + b_2 M_i + b_3 X_i M_i + \epsilon_i$$

By setting  $b_3 = 0$ :

$$Y_i = b_0 + b_1 X_i + b_2 M_i + 0 X_i M_i + \epsilon_i$$
$$Y_i = b_0 + b_1 X_i + b_2 M_i + \epsilon_i$$

This last model is the equivalent to Model 1. This shows how Model 1 is nested within Model 2.

The most common way to test for linear moderation in this case is to test if  $b_3$  is significantly different from zero in Model 2. If this coefficient is not significantly different from zero, there is insufficient evidence that allowing the effect of X on Y to depend on M improves the fit of the model, and so it is more reasonable to say this relationship is not contingent.

An equivalent way to test for linear moderation is to use hierarchical OLS regression. Though this method may seem excessively complicated as compared to testing one coefficient, this method generalizes to the case of a categorical X whereas the test of  $b_3$  does not. Because of this, I will focus on hierarchical OLS as the method of inference for moderation effects. A researcher would first estimate Model 1 then add the product term,  $X_iM_i$ , to estimate Model 2. Comparing these two models will test if allowing the relationship between X and Y to be contingent on M explains additional variance in the outcome variable. This type of analysis can be completed using any number of statistical packages. An F statistic corresponding to the change in the variance explained can be calculated using Equation 2.1.

$$F = \frac{df_2(R_2^2 - R_1^2)}{q(1 - R_2^2)} \tag{2.1}$$

Here the subscript on the  $R^2$  and df refer to the model number: Models 1 and 2 respectively as described above. The residual degrees of freedom in Model 2 is noted by  $df_2$ . The variance explained in Y in Model 1 and Model 2, are  $R_1^2$  and  $R_2^2$ respectively, and q is the number of constraints made to Model 2 to get Model 1. In the situation where X is dichotomous or continuous, q is always 1, but as we move into the case of a categorical X, q will depend on the number of categories in X. This F-value is then compared to a critical F to decide if it is significant or the cumulative distribution function is used to calculate the area to the right of the observed F-value to calculate a p-value, the probability of observing this change in  $R^2$  assuming that the relationship between X and Y is linearly independent of M (i.e. not contingent).

An inference about whether the relationship between X and Y is dependent on M is important, but this inference does not completely describe the nature of the contingency. The relationship between X and Y may get stronger or weaker as M increases, and in order to understand the full nature of the contingency, it is important to interpret the sign and magnitude of the regression coefficients. In multiple regression without interactions, the regression coefficients are an estimate of the effect of each variable *controlling* for the other variables or holding the other variables constant. For example, in Model 1 an estimate of  $b_1^*$  would be interpreted as the expected change in Y for a one unit change in X, holding M constant.

In regression models with interactions, the interpretations of the coefficients are no longer estimates of effects *controlling* for the other variables, but rather they are conditional effects. The estimate of the coefficient  $b_0$  has the same interpretation as  $b_0^*$ : the expected value of Y when both X and M are zero. The other coefficients, however, do not correspond with their counterparts in Model 1. They cannot be interpreted as holding the other variables constant, because a one unit change in X would also result in a change in XM when M is nonzero. In the model with interactions,  $b_1$  can be interpreted as the expected change in Y with a one unit change in X when M is zero. Similarly,  $b_2$  can be interpreted as the expected change in Y with a one unit change in M when X is zero. These two effects,  $b_1$  and  $b_2$ , are conditioned on certain variables being zero. The  $b_3$  parameter can be best understood by examining the equation for  $\Theta_{X\to Y|M}$ . From this equation it is clear that and estimate of  $b_3$  is the expected change in the effect of X on Y with a one unit change in M. Therefore if  $b_3$  is positive, the relationship between X and Y will become more positive as M increases. If  $b_3$  is negative, the relationship between X and Y will become more negative as M increases. The magnitude of  $b_3$  indicates how much the relationship changes with a one unit change in M.

A Note on Symmetry. Throughout this proposal I call X the "independent variable" and M the "moderator." However, these distinctions are mathematically arbitrary and driven primarily by theoretical considerations of the researcher. Alternatively, Model 2 could be used to describe how M's effect on Y may be linearly depend on X, a property called symmetry. Equation 2.2 results from plugging  $\Theta_{X\to Y|M}$  into the equation for Model 2:

$$Y_i = b_0 + (b_1 + b_3 M_i) X_i + b_2 M_i + \epsilon_i$$
(2.2)

Note that by multiplying out the terms, Equation 2.2 is equivalent to Equation 2.3.

$$Y_i = b_0 + b_1 X_i + b_3 M_i X_i + b_2 M_i + \epsilon_i$$
(2.3)

And by regrouping the terms in a new way, it is clear that the same equation could be used to describe M's effect on Y as a function of X.

$$Y_i = b_0 + b_1 X_i + (b_2 + b_3 X_i) M_i + \epsilon_i$$
(2.4)

Where the conditional effect of M on Y could be described as  $\Theta_{M\to Y|X} = b_2 + b_3 X_i$ . There is no mathematical distinction between X's effect being moderated by M and M's effect being moderated by X. So, throughout the proposal I will refer to X as the independent variable and M as the moderator with the understanding that this distinction is for simplicity and depending on the research question, researchers should consider which assignment of independent variable and moderator would be more useful and informative to their research question.

### 2.2 Probing Moderation Effects

Once an inferential test of moderation is completed and evidence of moderation is found, researchers often ask more specific questions about the nature of the moderated effect. For what values of M does X positively influence Y, and for what values of M does X negatively influence Y? When M is at its mean, does X significantly predict Y? These are all questions related to conditional effects, the effect of Xon Y conditional on some value of M. Questions of this nature can be answered by "probing" interactions. Throughout this manuscript I will discuss two frequently used methods for probing an interaction: simple slopes analysis and the Johnson-Neyman procedure.

#### 2.2.1 Simple-Slopes Analysis

Simple-slopes analysis is a method for estimating and testing conditional effects in order to answer the question: When M is equal to some value, say m, what is the effect of X on Y? Simple slopes analysis relies on the estimate of the conditional effect of X on Y,  $\hat{\Theta}_{X \to Y|M=m}$ , and its standard error,  $s_{\hat{\Theta}_{X \to Y|M=m}}$ . In simple-slopes analysis, the researcher chooses a value of M to assess the effect on X on Y at m. The selected value of M is entered into the Equations 2.5 and 2.6 to estimate the conditional effect of X on Y at m and the estimated standard error of this effect.

$$\hat{\Theta}_{X \to Y|M=m} = \hat{b}_1 + \hat{b}_3 m \tag{2.5}$$

$$\hat{s}_{\hat{\Theta}_{X \to Y|M=m}} = \sqrt{\hat{s}_{b_1}^2 + 2m\hat{s}_{\hat{b}_1\hat{b}_3} + m^2\hat{s}_{\hat{b}_3}^2} \tag{2.6}$$

The regression coefficient estimates from Model 2 are used as  $\hat{b}_1$  and  $\hat{b}_3$  in Equation 2.5. Estimates from Model 2 are also used in Equation 2.6:  $\hat{s}_{\hat{b}_1}^2$  is the estimated sampling variance of  $\hat{b}_1$ ,  $\hat{s}_{\hat{b}_3}^2$  is the estimated sampling variance of  $\hat{b}_3$ , and  $s_{\hat{b}_1\hat{b}_3}$  is the estimated sampling covariance between  $\hat{b}_1$  and  $\hat{b}_3$ . The ratio of  $\hat{\Theta}_{X\to Y|M=m}$  to  $\hat{s}_{\hat{\Theta}_{X\to Y|M=m}}$  is *t*-distributed with n-p-1 degrees of freedom under the null hypothesis that  $\hat{\Theta}_{X\to Y|M=m} = 0$ . That is

$$t_{obs} = \frac{\hat{\Theta}_{X \to Y|M=m}}{\hat{s}_{\hat{\Theta}_{X \to Y|M=m}}} \sim t_{(n-p-1)} \mid H_0$$

where n is the total sample size and p is the number of predictors in the unconstrained model. For example, in Model 2, there are three regressors (X, M, and XM), so p = 3.

In simple-slopes analysis, m is chosen and plugged in to Equations 2.5 and 2.6, then the observed t-value,  $t_{obs}$ , is calculated. This value is then compared to a critical t-value corresponding to the  $\frac{\alpha}{2}$  quantile of the t-distribution with n - p - 1 degrees of freedom, where  $\alpha$  is the level of the test corresponding to the desired Type I error rate of the test, typically chosen as .01, .05, or .1. If the observed t-value is more extreme than the critical t-value, then the researcher concludes that is it unlikely that X has no effect on Y when M = m. More typically the t-statistic is used to calculate a *p*-value which represents the probability that a value this extreme or more extreme would have occured under the null hypothesis. This *p*-value can be compared to a set  $\alpha$  level, and if it is smaller than  $\alpha$  the null hypothesis is rejected. Using this procedure researchers can probe the effect of X on Y at different values of M, both estimating the effect of X on Y at that value and completing a hypothesis test which determines if this effect is significantly different than zero.

Choosing points along M to probe the relationship between X and Y is often arbitrary. If M is a dichotomous variable, then it makes sense to examine the effect of X on Y for each coded value of M. If M is a continuous variable, however the choice is more arbitrary. Researchers often choose the sample mean of M and the sample mean plus and minus one standard deviation (Bauer & Curran, 2005; Cohen et al., 2003; Spiller et al., 2013). In some cases, particularly if M is skewed, one of these points may be out of the range of the collected data, and therefore claims about the estimated effect of X on Y at that point on M are dubious at best. Hayes (2013) recommends probing along the percentiles of M (e.g., 10th percentile, 20th percentile, 90th percentile) to guarantee that all probed points are within the range of the observed data on the moderator. Alternatively, there may be specific points that are of interest to researchers. For example, many depression scales have cut-off scores for the diagnosis of depression, so it may be of interest for a researcher interested in the moderating role of depression to examine the effect of their independent variable on their outcome variable at that cutoff. Similarly, some scales like BMI have ranges of interest: a BMI under 18.5 indicates being underweight, between 18.5 and 25 indicates normal range, etc. Researchers interested in the moderating role of BMI may use these ranges to inform the points at which they probe their interaction effects using the simple slopes method.

The simple-slopes method is very helpful for understanding interaction effects by examining more closely specific conditional effects. The interpretations of these analyses often depend on the choices of the analyst, specifically at which points to probe the relationship between X and Y. Next I will discuss a method for probing interactions which does not rely on choice of sometimes arbitrary points. Rather, this method identifies points along a continuous moderator where the conditional effect of X on Y transitions from statistically significant to non-significant or vice versa.

#### 2.2.2 The Johnson-Neyman Procedure

Rather than conditioning on specific values of the moderator, the Johnson-Neyman procedure solves for values of the moderator which mark the transition between significant and non-significant effects of X on Y. These points may be of particular interest to some researchers. They are the points,  $m_{JN}$ , along M where the conditional effect of X on Y is exactly statistically significant at level  $\alpha$ . The same definition of the conditional effect of X on Y is used in the Johnson-Neyman procedure as in the simple slopes method; however this method, rather than plugging in values of M, sets the ratio of the conditional effect to its standard error equal to a specific value then solves for M. In order for the conditional effect of X on Y at some value of M to be exactly statistically significant at level  $\alpha$ , then the ratio of  $\hat{\Theta}_{X \to Y|M=m_{JN}}$  to  $\hat{s}_{\hat{\Theta}_{X \to Y|M=m_{JN}}}$  must equal exactly the critical t-value for a level  $\alpha$  test with n - (p+1)degrees of freedom.

$$\frac{\hat{\Theta}_{X \to Y|M=m_{JN}}}{\hat{s}_{\hat{\Theta}_{X \to Y|M=m_{JN}}}} = \frac{\hat{b}_1 + \hat{b}_3 m_{JN}}{\sqrt{\hat{s}_{b_1}^2 + 2m_{JN} \hat{s}_{\hat{b}_1 \hat{b}_3} + m_{JN}^2 \hat{s}_{\hat{b}_3}^2}} = t_{crit} = t_{n-(p+1),\alpha/2}$$

The above equation can be rewritten as a second degree polynomial.

$$0 = \hat{b}_1^2 - t_{crit}^2 \hat{s}_{\hat{b}_1}^2 + (2\hat{b}_1\hat{b}_3 - 2t_{crit}^2\hat{s}_{\hat{b}_1\hat{b}_3})m_{JN} + (\hat{b}_3^2 - \hat{s}_{\hat{b}_3}^2t_{crit}^2)m_{JN}^2$$
(2.7)

Solutions to the roots of this polynomial, and therefore solutions for the Johnson-Neyman procedures, can be found using the quadratic equation. Plugging in the values of the estimated regression coefficients, sampling variances, and the critical t-value identifies the points such that the conditional effect of X on Y at  $m_{JN}$  are exactly statistically significant at level  $\alpha$ .

$$m_{JN} = \frac{2t_{crit}^2 \hat{s}_{\hat{b}_1 \hat{b}_3} - 2\hat{b}_1 \hat{b}_3 \pm \sqrt{(2\hat{b}_1 \hat{b}_3 - 2t_{crit}^2 \hat{s}_{\hat{b}_1 \hat{b}_3})^2 - 4(\hat{b}_1^2 - t_{crit}^2 \hat{s}_{\hat{b}_1}^2)(\hat{b}_3^2 - \hat{s}_{\hat{b}_3}^2 t_{crit}^2)}{2(\hat{b}_1^2 - t_{crit}^2 \hat{s}_{\hat{b}_1}^2)}$$
(2.8)

The above equation results in two Johnson-Neyman solutions, one corresponding to when the ratio of the conditional effect of X on Y to its standard error is equal to  $t_{crit}$  and one for when the ratio is equal to  $-t_{crit}$ . These points may or may not be within the measured range on M, and should only be interpreted if they are within the measured range of M.

Though I've described the Johnson-Neyman procedure within the context of linear regression, this is not how the original method was developed. Over time the Johnson-Neyman procedure has been generalized to more moderators and to linear regression and the general linear model. In the next section I will describe these developments and how they may be used in the creation of a method for probing interactions between a categorical variable with three or more levels and a continuous moderator, providing an omnibus test of group differences at different values of a moderator.

#### A Brief History of the Johnson-Neyman Procedure

The Johnson-Neyman procedure was developed within the framework of analysis of covariance (Johnson & Neyman, 1936; Johnson & Fay, 1950). The original approach was developed in a two-group two-moderator model. They began by defining a linear model of the outcome variable of interest for two groups, group A and B:

$$E(Y_A) = a_0 + a_1 X_i + a_2 Z_i$$
$$E(Y_B) = b_0 + b_1 X_i + b_2 Z_i$$

Here  $Y_A$  and  $Y_B$  are the outcome variables for group A and B respectively. The variables X and Z are moderators measured for each individual/case. The lower case a's and b's are weights, estimated using a least squares criterion. The question was then posed: For what values of X and Z are the expected values of  $Y_A$  and  $Y_B$  the same and for which are they different? Johnson and Neyman derive the sums of squares  $(SS_{Full})$  for a model where the expected values of  $Y_A$  and  $Y_B$  are different at specified values of X and Z, x and z, and the sums of squares  $(SS_{reduced})$  for a model where the expected values are fixed to be equal at x and z. Note that  $SS_{Full}$ does not depend on the choice of x and z, because there are no constraints on this model. However,  $SS_{reduced}$  is a function of x and z. This is equivalent to asking if there is an effect of group (A vs. B) for individuals with the specific observed values x and z. They define a sufficient statistic to test this question, the ratio between the two calculated sums of squares ( $SS_{Full}/SS_{reduced}$ ) whose cumulative distribution function is the incomplete beta function, under the null hypothesis of no difference in expected values at x and z. Johnson and Neyman define a critical value of the incomplete beta function, as a function of some test level  $\alpha$ , then derive the region for which  $SS_{Full}/SS_{reduced}$  will be smaller than that critical value. This region is defined as the region of significance and defines the region(s) of the range of the two moderators X and Z for which the expected values of  $Y_A$  and  $Y_B$  differ. Of particular importance in this method is the curve which limits the region of significance, which is defined by the points at which  $SS_{Full}/SS_{reduced}$  exactly equals the critical value as defined by  $\alpha$ . This curve is frequently referred to as the *boundary of significance*.

Extensions of the Johnson-Neyman procedure within the ANCOVA framework allowed for increased use of this method. The original work described only two moderators, but Johnson and Hoyt (1947) generalized this approach to three moderators. Abelson (1953) proposed that instead of always using the Johnson-Neyman procedure, researchers should test if the regression slopes are the same for each group (a test of moderation) and only proceed with the Johnson-Neyman procedure if this hypothesis is rejected. Otherwise researchers can use ANCOVA. Additionally, Abelson (1953) derived formulas for both the region of significance and the boundary of significance for any number of moderators. Potthoff (1964) proposed the first approach for dealing with more than two groups. He derived a simultaneous Johnson-Neyman solution for all pairwise comparisons of groups.

There have been a few proposed methods for how to treat multiple groups when using the Johnson-Neyman procedure. Huitema (1980) proposed using the procedure for each pair of groups, thus defining regions of significance for each pair of groups. Potthoff (1964) derived a simultaneous method for these pairwise comparisons. However both of these approaches can result in a large number of regions, the interpretation of which can be difficult with an increasing number of groups. It could be useful for researchers to know where along the range of a moderator the groups differ from each other using an omnibus test of differences. Some research based on the general linear model (Hunka, 1995; Hunka & Leighton, 1997), provided equations for an omnibus region of significance with multiple groups in matrix form, which will be used in my derivations later. However, the closed form solutions for the region of significance were not provided, but rather, given a set of data the region of significance was solved for using Mathematica, a fairly expensive program which is not commonly used within psychology. Additionally, no more than three-groups were considered, which may be the upper limit of this method for finding omnibus groups differences.

An important extension of the Johnson-Neyman procedure moved away from just categorical independent variables and into the framework of multiple regression, which can include a categorical or continuous independent variable. Bauer and Curran (2005) were the first to derive the Johnson-Neyman procedure for a continuous by continuous variable interaction. They derived Equations 2.5 - 2.8, providing closed form equations for solutions to the Johnson-Neyman boundary of significance and thus the regions of significance. Bauer and Curran (2005) continue by deriving the approximate Johnson-Neyman boundary of significance for linear multilevel models. Preacher, Curran, and Bauer (2006) followed up with an online tool to calculate Johnson-Neyman boundaries of significance for multiple linear regression, multilevel models, and latent curve analysis. Hayes and Matthes (2009) generalized this approach to logistic regression, where the outcome is dichotomous. These publications together allow for many applications to continuous independent variables in a variety of different types of models.

These innovations and easy to use tools have allowed for the Johnson-Neyman procedure to be applied in more varied contexts, increasing the versatility of this type of analysis. Since its conception, researchers from a variety of academic fields have published in applied journals encouraging their colleagues to consider the Johnson-Neyman procedure as an alternative to ANCOVA or the simple-slopes method for probing moderation effects, including education (Carroll & Wilson, 1970), nursing (D'Alonzo, 2004), ecology (Engqvist, 2005), psychology (Hayes & Matthes, 2009), and marketing (Spiller et al., 2013). Adoption of this method has been encouraged by the development of a variety of computational tools to assist researchers in conducting these analyses.

### 2.2.3 Tools for Probing

Probing an interaction by hand is often computationally intense and allows for many opportunities for mistakes and rounding errors. A number of researchers have created tools which take the computational burden, and potential for error, off of the researcher. The first computational tool available for the Johnson-Neyman procedure was developed in the language TELCOMP (Carroll & Wilson, 1970). With input summary statistics, the program could solve for the region of significance in a two-group two-moderator problem, boasting a run time of a mere half hour. Code for computing the Johnson-Neyman points for a dichotomous independent variable in both SPSS and BDMP was provided in Karpman (1983) and expanded to SAS in Karpman (1986). Pedhazur (1997) and O'Connor (1998) provided programs compatible for SPSS and SAS which computed simple-slopes analysis for two- and threeway interactions. Preacher et al. (2006) provide an online tool which takes a variety of inputs generated from a traditional statistical package and can output both simple-slopes and Johnson-Neyman solutions for multiple linear regression, hierarchical linear models, and latent curve analysis. The first within-package tool for SPSS and SAS which could compute both simple-slopes and the Johnson-Neyman procedure for continuous and dichotomous outcome variables was MODPROBE (Hayes & Matthes, 2009). Most of the capabilities of MODPROBE have since been integrated into PROCESS, a tool for SPSS and SAS which estimates moderation, mediation, and conditional process models (Hayes, 2013).

Probing interactions is an important part of understanding how an the effect of the independent variable on an outcome looks and behaves along the range of the moderator. Methods for probing interactions (simple-slopes and the Johnson-Neyman procedure) as well as accompanying tools for these methods have been available for a number of years. Since there has not previously been a method for implementing the Johnson-Neyman technique with categorical independent variables, I will provide a tool to conduct the analysis, reducing the burden on the researcher.

## Chapter 3: Moderation of the Effect of a Categorical Variable

There are many instances where researchers are interested in moderation and the predictor of interest X is categorical, such as race or religion or experimental condition (when there are more than two conditions). For example, Barajas-Gonzales and Brooks-Gunn (2014) investigated the relationship between participants' ethnicity (White, Black, or Latino) and fear of safety in their neighborhood. They proposed that some ethnic groups may be more reactive to neighborhood disorder than other groups, resulting in an interaction between ethnicity and neighborhood disorder in predicting fear for safety. In a different study, Niederdeppe, Shapiro, Kim, Bartolo, and Porticella (2014) had participants read one of three narratives about a woman's experience with weight loss, where each story varied how much personal responsibility she took for her inability to lose weight (categorized as low, moderate, and high). Participants then indicated their support for a variety of government policies which might help individuals lose weight (e.g., increasing sidewalks in neighborhoods). They found that story narrative had essentially no effect among those high in liberal beliefs, but individuals low in liberal beliefs were more supportive of policies when the woman in the story took low or moderate responsibility for her weight loss. Many other examples of moderation of the effect of a categorical variable can be found throughout psychology and other social sciences (e.g., Cleveland et al., 2013; O'Malley, Voight, Renshaw, & Eklund, 2015).

In this chapter I describe how to make inference about moderation when X is categorical, focusing particularly on the case where X has three or more categories. Just as in the case of a continuous or dichotomous X, probing a moderation effect is key to understanding how the effect of X on Y changes across the range of M. I will describe the currently available methods for probing these types of interactions in this chapter, leaving the development of the Johnson-Neyman procedure for the following chapter.

#### **3.1** Inference about Moderation

In the categorical case, X can be represented in linear regression using k - 1 variables, where k is the number of categories in X. There are a number of ways to code X into these new variables, one of the most popular of which is dummy coding (also known as indicator coding). Dummy coding is a method which recodes a categorical variable into k-1 dichotomous variables which take the value of either 0 or 1 depending on which group the case is in. Each of the k-1 variables corresponds to a specific group in X, with one group lacking a corresponding variable. If participant *i* is in group *j* then the dummy variable corresponding to group *j* will equal 1 and all other dummy variables will equal zero for case *i*. The one group which does not have a corresponding dummy variable is often referred to as the *reference group*, and individuals in this group have scores of zero on all dummy variables. An example of dummy coding is provided below, where  $D_1$  corresponds to participants in Group 1,

 $D_2$  corresponds to participants in Group 2,  $D_3$  corresponds to participants in Group 3, and participants in Group 4 are the reference group.

| Χ | $D_1$ | $D_2$ | $D_3$ |
|---|-------|-------|-------|
| 1 | 1     | 0     | 0     |
| 2 | 0     | 1     | 0     |
| 3 | 0     | 0     | 1     |
| 4 | 0     | 0     | 0     |

I will continue throughout the manuscript under the assumption that dummy codes are being used to describe the categorical variable of interest. However, any other kind of coding can be used without loss of generality.

As in the case of two groups, researchers interested in testing questions of moderation can set up two competing models, one model where the effect of X (now coded in the D variables) is not contingent on some moderator M and another model where the effect of X is contingent on M. Let us consider the example of three groups. Because the effect of X is now captured by 2 variables ( $D_1$  and  $D_2$ ), the effect of each of these variables should be allowed to be contingent on M as such:

Model 1: 
$$Y_i = b_0^* + b_1^* D_{1i} + b_2^* D_{2i} + b_3^* M_i + \epsilon_i^*$$
  
Model 2:  $Y_i = b_0 + \Theta_{D_1 \to Y|M} D_{1i} + \Theta_{D_2 \to Y|M} D_{2i} + b_3 M_i + \epsilon_i$   
 $\Theta_{D_1 \to Y|M} = b_1 + b_4 M_i$   
 $\Theta_{D_2 \to Y|M} = b_2 + b_5 M_i$ 

Here the effect of  $D_1$  and the effect of  $D_2$  are linear functions of M. By plugging in the equations for  $\Theta_{D_1 \to Y|M}$  and  $\Theta_{D_2 \to Y|M}$  and expanding, the equation for Model 2 can be re-expressed as:

$$Y_i = b_0 + b_1 D_{1i} + b_2 D_{2i} + b_3 M_i + b_4 M_i D_{1i} + b_5 M_i D_{2i} + \epsilon_i$$
(3.1)

From Equation 3.1 it is clear that Model 1 is nested under Model 2, in that if both  $b_4$  and  $b_5$  are zero, then Model 2 is equivalent to Model 1. Most regression software does not provide results for simultaneous inference about multiple coefficients in the model, but rather provides inferences about each coefficient on its own. However, similar to the two group case, hierarchical regression analysis can be used to test if adding the product terms  $D_1M$  and  $D_2M$  to Model 1 explains additional variance in Y (i.e., if the joint hypothesis that both  $b_4$  and  $b_5$  are zero can be rejected). This type of analysis can be completed using most statistical packages which can estimate linear regression models. If the product terms explain a significant portion of additional variance as assessed by applying Equation 2.1 and associated hypothesis tests, then this is evidence that the relationship between X and Y is indeed contingent on M.

If there are more than three groups, additional dummy coded variables are needed, and thus additional conditional relationships will be needed to fully quantify the conditional relationship between X and Y. For example, Model 2 for a four group case would be written as such:

Model 2: 
$$Y_i = b_0 + \Theta_{D_1 \to Y|M} D_{1i} + \Theta_{D_2 \to Y|M} D_{2i} + \Theta_{D_3 \to Y|M} D_{3i} + b_4 M_i + \epsilon_i$$
  

$$\Theta_{D_1 \to Y|M} = b_1 + b_5 M_i$$

$$\Theta_{D_2 \to Y|M} = b_2 + b_6 M_i$$

$$\Theta_{D_3 \to Y|M} = b_3 + b_7 M_i$$

#### **3.2** Probing Moderation Effects

Just like in the continuous or dichotomous case, a test of moderation is often insufficient for answering all the questions a researcher may pose. For example, Neiderdeppe et al. (2014) may be interested in identifying the range of scores on their political ideology scale (liberal – conservative) which correspond to significant differences among the story narratives. Methods for probing moderation of the relationship between a categorical independent variable and a continuous outcome have been discussed in some books and publications (e.g., Cohen et al., 2003; Darlington & Hayes, 2017; Spiller et al., 2013), but not nearly as much as in the dichotomous or continuous independent variable case. Specifically, what differentiates the categorical case is that there is not always a single function which can describe the conditional effect of X on Y, but rather k - 1 functions which must be taken together to describe the conditional effect of X on Y.

#### 3.2.1 Simple-Slopes Analysis

The methods described in previous sections could be used to test pairwise differences between groups at specific values of a moderator. However other methods must be used to test for omnibus group differences at a specific value of the moderator, say m. The test for a dichotomous or a continuous independent variable relies on a single estimate of the conditional effect of X on Y,  $\Theta_{X\to Y|M=m}$ , and its estimated standard error,  $\hat{s}_{\Theta_{X\to Y|M=m}}$ . However, in the categorical case there are k-1 conditional effects, which must be considered all together in order to make a claim about omnibus group differences.

To test the hypothesis of no group differences in Y at a specific value of the moderator, a researcher can set up and compare the fit of two models: one which fixes all of the groups to be equal on Y at the value of interest, m, and one which allows the groups to differ in Y at m. If allowing the groups to differ at m yields a
better fitting model of Y, then this supports the claim that the groups vary on Y at m, and thus there is an omnibus effect of X on Y at M = m.

To decide how to set up these models, let us examine the interpretations of the regression coefficients in Equation 3.1. The interpretation of  $b_1$  is the predicted change in Y with a one unit change in  $D_1$  when M is zero. When  $D_1$  is a dummy coded variable, this indicates the estimated difference in Y between the group coded with  $D_1$  and the reference group when M is zero. Similarly, when using dummy coding,  $b_2$  is the estimated difference in Y between the group coded with  $D_2$  and the reference group when M is zero. Therefore, when both  $b_1$  and  $b_2$  are zero, there are no group differences when M is zero.

A researcher could use hierarchical regression to test if  $b_1$  and  $b_2$  are both zero by setting up one model which fixes  $b_1$  and  $b_2$  to be zero, and one that allows them to vary.

Model 1: 
$$Y_i = b_0^* + b_1^* M_i + b_2^* D_{1i} M_i + b_3^* D_{2i} M_i + \epsilon_i^*$$
  
Model 2:  $b_0 + b_1 D_{1i} + b_2 D_{2i} + b_3 M_i + b_4 D_{1i} M_i + b_5 D_{2i} M_i + \epsilon_i$ 

From the above equations it is clear that Model 1 is nested within Model 2, where if  $b_1$  and  $b_2$  both equal zero in Model 2 then Model 2 is the same as Model 1. Using hierarchical regression, estimate Model 1 then Model 2. If Model 2 explains significantly more variance in Y than Model 1, this is evidence that  $b_1$  and  $b_2$  are not both equal to zero, and thus there are group differences at the point where M is equal to zero.

Based on this method it is easy to probe the effect of X and Y when M = 0. Instead, we would like a general method for probing at any value of M, not just M = 0. In order to probe the effect of X on Y at any point along M, say m, a researcher should center the variable M at m, call this new variable  $M^c = M - m$ and use the same hierarchical regression method as above.

Model 1: 
$$Y_i = b_0^* + b_1^* M_i^c + b_2^* D_{1i} M_i^c + b_3^* D_{2i} M_i^c + \epsilon_i^*$$
  
Model 2:  $b_0 + b_1 D_{1i} + b_2 D_{2i} + b_3 M_i^c + b_4 D_{1i} M_i^c + b_5 D_{2i} M_i^c + \epsilon_i$ 

It is now clear how to test for group differences in Y at any value of the moderator. This method is equivalent to the simple-slopes method for two conditions, and would result in the same conclusions as the method described above if used for a dichotomous predictor X.

Though intuitive to some, it may be more clear to explain why re-centering works. This can be described in the form of a model comparison, where one model fixes the group differences in Y to be zero at m and the other allows the groups to vary at m. The unconstrained model does not depend on the value of m chosen. However, by beginning with the unconstrained model it is possible to derive the constrained model in a general form, showing why the re-centering strategy proposed above works. The unconstrained model for three groups can be described as such:

$$Y_{i} = b_{0} + \Theta_{D_{1} \to Y|M} D_{1i} + \Theta_{D_{2} \to Y|M} D_{2i} + b_{3} M_{i} + \epsilon_{i}$$

$$\Theta_{D_{1} \to Y|M} = b_{1} + b_{4} M_{i}$$

$$\Theta_{D_{2} \to Y|M} = b_{2} + b_{5} M_{i}$$
(3.2)

Because the question of interest is if the effect of X on Y is zero at m, constrain both  $\Theta_{D_1 \to Y|M=m}$  and  $\Theta_{D_2 \to Y|M=m}$  to be zero.

$$0 = b_1 + b_4 m$$
$$0 = b_2 + b_5 m$$

This implies:

$$b_1 = -b_4 m$$
$$b_2 = -b_5 m$$

Plugging this constraint into Equation 3.2 gives:

$$Y_i = b_0 - b_4 m D_{1i} - b_5 m D_{2i} + b_3 M_i + b_4 D_{1i} M_i + b_5 D_{2i} M_i + \epsilon_i$$

Reordering and grouping terms results in

$$Y_i = b_0 + (M_i - m)b_4 D_{1i} + (M_i - m)b_5 D_{2i} + b_3 M_i + \epsilon_i$$

From this equation it is clear how the re-centering method described earlier empirically tests the omnibus group differences at a specific value of M = m. Formal derivations of this method, the model sums of squares, and hypothesis tests involved for any number of groups can be found in Forster (1971, 1974).

The next extension would be to ask if a range of the moderator could be defined such that any point along that range would result in rejecting the hypothesis of no group differences. This is the formulation of the Johnson-Neyman procedure with a categorical independent variable, and the primary topic of this thesis.

## Chapter 4: Derivations of the Johnson-Neyman Procedure for Multiple Groups

Using an application of the approach to the Johnson-Neyman procedure in linear regression from Bauer and Curran (2005) and the principles of hypothesis tests for sets of regression coefficients, I will derive the boundary of significance for an omnibus test of group difference along some moderator M. I begin with the derivation for three groups and continue with a partial derivation for four groups. The solution for two groups relies on solving for the roots of a two-degree polynomial, achieved easily by applying the quadratic equation. The derivation of the Johnson-Neyman boundary of significance for the three-group case relies on solving for the roots of a fourthdegree polynomial, for which closed form solutions are available. In the four-group derivation, the roots of an eighth-degree polynomial are required. The Abel-Ruffini theorem states that there are no algebraic solutions for the roots of polynomials of degree five or more (Abel, 1824; Ruffini, 1799). To deal with the issue of no closed form algebraic solution for the boundary of significance I provide an iterative computer program that solves for the Johnson-Neyman boundaries for any number of groups.

## 4.1 Three Groups

The region of significance is the range of the moderator such that any point within that range results in rejecting the null hypothesis that there are no group differences in Y at that point. These points can be described as those where allowing  $\Theta_{D_1 \to Y|M=m}$ and  $\Theta_{D_2 \to Y|M=m}$  to be non-zero explains a significant amount of variance in Y. The test of significance for the increase in variance explained is based on an F statistic which can be calculated using Equation 2.1. This equation can be rewritten using matrix algebra, and in this form I will use it to derive the boundaries of significance in the three-group case.

$$F = \frac{(L'\hat{\beta})(L'\Sigma_{\hat{\beta}}L)^{-1}(L'\hat{\beta})}{q}$$

$$\tag{4.1}$$

Recall from Chapter 2 that p is the number of predictors in the unconstrained model, and q is the number of constraints made to the unconstrained model to results in the constrained model. In the case of three groups q = 2. Here L' is a  $q \times (p+1)$ matrix which describes the model constraints under the null hypothesis.  $\hat{\beta}$  is a  $(p + 1) \times 1$  column vector containing the OLS estimates of the regression coefficients from Model 2.  $\Sigma_{\hat{\beta}}$  is the estimated variance-covariance matrix of the regression coefficients of size  $(p+1) \times (p+1)$ .

First consider the original data matrix, X. This matrix is not used in any of the further equations, but it is important to note that formatting the data matrix in this way results in the interpretations of the estimated regression coefficients below matching the equations used above, particularly Equation 4.1.

$$X = \begin{bmatrix} 1 & D_{11} & D_{21} & M_1 & D_{11}M_1 & D_{21}M_1 \\ 1 & D_{12} & D_{22} & M_2 & D_{12}M_2 & D_{22}M_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & D_{1n} & D_{2n} & M_n & D_{1n}M_n & D_{2n}M_n \end{bmatrix}$$

The corresponding regression coefficient estimates from Model 2 would be

$$\hat{\beta}' = \begin{bmatrix} \hat{b}_0 & \hat{b}_1 & \hat{b}_2 & \hat{b}_3 & \hat{b}_4 & \hat{b}_5 \end{bmatrix}$$

Because the null hypothesis is that  $\Theta_{D_1 \to Y|M=m} = b_1 + b_4 m = 0$  and  $\Theta_{D_2 \to Y|M=m} = b_2 + b_5 m = 0$  our contrast matrix L is defined as

$$L' = \left[ \begin{array}{rrrr} 0 & 1 & 0 & 0 & m & 0 \\ 0 & 0 & 1 & 0 & 0 & m \end{array} \right]$$

It may not be initially clear why L has been chosen in this manner, but once  $L'\hat{\beta}$ is examined, it is clear that the estimates of the functions of interest  $\hat{\Theta}_{D_1 \to Y|M=m}$  and  $\hat{\Theta}_{D_2 \to Y|M=m}$  are defined by this contrast matrix.

$$L'\hat{\beta} = \begin{bmatrix} \hat{b}_1 + \hat{b}_4m \\ \hat{b}_2 + \hat{b}_5m \end{bmatrix}$$

Additionally, because the individual variance and covariance components will be integral to these derivations,  $\Sigma_{\hat{\beta}}$  will be defined as

$$\Sigma_{\hat{\beta}} = \begin{bmatrix} v_0 & c_{01} & c_{02} & c_{03} & c_{04} & c_{05} \\ c_{01} & v_1 & c_{12} & c_{13} & c_{14} & c_{15} \\ c_{02} & c_{12} & v_2 & c_{23} & c_{24} & c_{25} \\ c_{03} & c_{13} & c_{23} & v_3 & c_{34} & c_{35} \\ c_{04} & c_{14} & c_{24} & c_{34} & v_4 & c_{45} \\ c_{05} & c_{15} & c_{25} & c_{35} & c_{45} & v_5 \end{bmatrix}$$

Here the estimated sampling variance of each regression coefficient is defined by the variable v with same subscript as the regression coefficient. For example, the estimated sampling variance of  $\hat{b}_4$  is  $v_4$ . Similarly, the estimated sampling covariance of two regression coefficients is noted by the variable c with the same subscripts as regression coefficients. For consistency, the smallest subscript is always listed first. For example, the estimated sampling covariance of  $\hat{b}_1$  and  $\hat{b}_5$  is noted as  $c_{15}$ .

Applying Equation 4.1 to the above defined matrices

$$\begin{split} (L'\hat{\beta})(L'\Sigma_{\hat{\beta}}L)^{-1}(L'\hat{\beta}) &= |L'\Sigma_{\hat{\beta}}L|^{-1} \left[ (\hat{b}_1 + \hat{b}_4m) [(v_2 + 2c_{25}m + m^2v_5)(\hat{b}_1 + \hat{b}_4m) - (\hat{b}_2 + \hat{b}_5m)(c_{12} + c_{15}m + c_{24}m + c_{45}m^2) ] + (\hat{b}_2 + \hat{b}_5m) [(v_1 + 2c_{14}m + v_4m^2)(\hat{b}_2 + \hat{b}_5m) - (\hat{b}_1 + \hat{b}_4m)(c_{12} + c_{15}m + c_{24}m + c_{45}m^2) ] ] \end{split}$$

Where

$$|L'\Sigma_{\hat{\beta}}L| = (v_1 + 2c_{14}m + v_4m^2)(v_2 + 2c_{25}m + v_5m^2) - (c_{12} + c_{24}m + c_{15}m + c_{45}m^2)^2$$

Plugging in these values to Equation 4.1:

$$F = \frac{(\hat{b}_1 + \hat{b}_4 m)^2 (v_2 + 2c_{25}m + v_5 m^2) + (\hat{b}_2 + \hat{b}_5 m)^2 (v_1 + 2c_{14}m + v_4 m^2)}{2[(v_1 + 2c_{14}m + v_4 m^2)(v_2 + 2c_{25}m + v_5 m^2) - (c_{12} + c_{24}m + c_{15}m + c_{45}m^2)^2]}$$
(4.2)

The boundary of significance is defined by values of m such that F in Equation 4.2 is exactly significant as defined by some preset test level  $\alpha$  (typically chosen within the range of .01 - .1). The inverse cumulative distribution of F is a function which, given a certain probability p between zero and one, outputs the point along the Fdistribution such that 100p% of the distribution falls below that point. The critical value of F,  $F_{crit}$ , is the value of F such that the statistic is exactly statistically significant at some value  $\alpha$  and is the inverse cumulative distribution function of F at  $\alpha$  with q and  $df_2$  degrees of freedom (recall that  $df_2$  is the residual degrees of freedom from the unconstrained model). When the F statistic as defined by Equation 4.2 is exactly equal to  $F_{crit}$ , this statistic will be exactly significant, and thus values of m such that F as defined in Equation 4.2 is equal to  $F_{crit}$  define the boundary of significance.

To find the boundary of significance, plug in  $F_{crit}$  and q and solve for m. By plugging in these values, setting the left hand side equal to zero, and reorganizing terms it is clear that this equation is a fourth-degree polynomial in m.

$$0 = (\hat{b}_{1}^{2}v_{2} + \hat{b}_{2}^{2}v_{1} + 2F_{crit}v_{1}v_{2}c_{12}^{2}) + 2[c_{23}\hat{b}_{1}^{2} + \hat{b}_{1}\hat{b}_{4}v_{2} + c_{14}\hat{b}_{2}^{2} + \hat{b}_{2}\hat{b}_{5}v_{1} + 2F_{crit}(c_{12}c_{24} + c_{12}c_{15} - v_{1}c_{25} - v_{2}c_{14})]m + [v_{5}\hat{b}_{1}^{2} + 4c_{25}\hat{b}_{1}\hat{b}_{4} + \hat{b}_{4}^{2}v_{2} + v_{4}\hat{b}_{2}^{2} + 4c_{14}\hat{b}_{2}\hat{b}_{5} + \hat{b}_{5}^{2}v_{1} + 2F_{crit}(2c_{45}c_{12} + c_{24}^{2} + 2c_{24}c_{15} + c_{15}^{2} - v_{1}v_{5} - 4c_{14}c_{25} - v_{2}^{2})]m^{2} + 2[v_{5}\hat{b}_{1}\hat{b}_{4} + c_{25}\hat{b}_{4}^{2} + v_{4}\hat{b}_{2}\hat{b}_{5} + c_{14}\hat{b}_{5}^{2} + 2F_{crit}(c_{24}c_{45} + c_{15}c_{45} - v_{5}c_{14} - c_{25}v_{2})]m^{3} + [v_{5}\hat{b}_{4}^{2} + v_{4}\hat{b}_{5}^{2} - 2F_{crit}v_{2}v_{5}c_{45}^{2}]m^{4}$$

$$(4.3)$$

The solutions for the roots of this equation are long algebraic equations. There are four solutions, some of which may be imaginary depending on specific values of the regression coefficients, variances, and covariances. Below is one of the solutions. In order to simplify notation, let each coefficient from Equation 4.3 be equal to some variable.

$$\begin{aligned} d &= \hat{b}_{1}^{2}v_{2} + \hat{b}_{2}^{2}v_{1} + F_{crit}2v_{1}v_{2} \\ e &= 2[c_{23}\hat{b}_{1}^{2} + \hat{b}_{1}\hat{b}_{4}v_{2} + c_{14}\hat{b}_{2}^{2} + \hat{b}_{2}\hat{b}_{5}v_{1} + 2F_{crit}(c_{12}c_{24} + c_{12}c_{15} - v_{1}c_{25} - v_{2}c_{14})] \\ f &= v_{5}\hat{b}_{1}^{2} + 4c_{25}\hat{b}_{1}\hat{b}_{4} + \hat{b}_{4}^{2}v_{2} + v_{4}\hat{b}_{2}^{2} + 4c_{14}\hat{b}_{2}\hat{b}_{5} + \hat{b}_{5}^{2}v_{1} + 2F_{crit}(2c_{45}c_{12} + c_{24}^{2} + 2c_{24}c_{14} + c_{15}^{2} - v_{1}v_{5} - 4c_{14}c_{25} - v_{2}^{2}) \\ g &= 2[v_{5}\hat{b}_{1}\hat{b}_{4} + c_{25}\hat{b}_{4}^{2} + v_{4}\hat{b}_{2}\hat{b}_{5} + c_{14}\hat{b}_{5}^{2} + 2F_{crit}(c_{24}c_{25} + c_{15}c_{45} - v_{5}c_{14} - c_{25}v_{2})] \end{aligned}$$

$$h = v_5 \hat{b}_4^2 + v_4 \hat{b}_5^2 - 2F_{crit} v_2 v_5$$

Using these new variables the solution for one root of Equation 4.3 can be expressed algebraically. This is the first Johnson-Neyman solution,  $m_{JN_1}$ . For the sake of brevity, and because these equations would typically be implemented in a computer program, there is no need to express the other roots. They are all of a similar form, based completely off the variables d, e, f, g, and h.

$$\begin{split} M_{JN_{1}} &= -\frac{g}{4h} + \frac{1}{2}(\frac{g^{2}}{4h^{2}} - \frac{2f}{3h} + \frac{1}{6}h(-288dfh + 108dg^{2} + 108e^{2}h - 36efg + 8f^{3} + \\ &\quad 12(-768d^{3}h^{3} + 576d^{2}egh^{2} + 384d^{2}f^{2}h^{2} - 432d^{2}fg^{2}h + \\ &\quad 81d^{2}g^{4} - 432de^{2}fh^{2} + 18de^{2}g^{2}h + 240def^{2}gh - 54defg^{3} - 48df^{4}h + \\ &\quad 12df^{3}g^{2} + 81e^{4}h^{2} - 54e^{3}fgh + 12e^{3}g^{3} + 12e^{2}f^{3}h - 3e^{2}f^{2}g^{2})^{1/2})^{1/3} + \\ &\quad \frac{2}{3}(12dh - 3eg + f^{2})/(h(-288dfh + 108dg^{2} + 108e^{2}h - 36efg + 8f^{3} + \\ &\quad 12(-768d^{3}h^{3} + 576d^{2}egh^{2} + 384d^{2}f^{2}h^{2} - 432d^{2}fg^{2}h + 81d^{2}g^{4} - \\ &\quad 432de^{2}fh^{2} + 18de^{2}g^{2}h + 240def^{2}gh - 54defg^{3} - 48df^{4}h + 12df^{3}g^{2} + \\ &\quad 81e^{4}h^{2} - 54e^{3}fgh + 12e^{3}g^{3} + 12e^{2}f^{3}h - 3e^{2}f^{2}g^{2})^{1/2})^{1/3})^{1/2} + \\ &\quad \frac{1}{2}(\frac{g^{2}}{2h^{2}} - \frac{4f}{3h} - \frac{1}{6h}(-288dfh + 108dg^{2} + 108e^{2}h - 36efg + 8f^{3} + \\ 12(-768d^{3}h^{3} + 576d^{2}egh^{2} + 384d^{2}f^{2}h^{2} - 432d^{2}fg^{2}h + 81d^{2}g^{4} - \\ &\quad 432de^{2}fh^{2} + 18de^{2}g^{2}h + 240def^{2}gh - 54defg^{3} - 48df^{4}h + 12df^{3}g^{2} + \\ &\quad 81e^{4}h^{2} - 54e^{3}fgh + 12e^{3}g^{3} + 12e^{2}f^{3}h - 3e^{2}f^{2}g^{2})^{1/2})^{1/3} - \\ &\quad \frac{2}{3}(12dh - 3eg + f^{2})/(h(-288dfh + 108dg^{2} + 108e^{2}h - 36efg + 8f^{3} + \\ 12(-768d^{3}h^{3} + 576d^{2}egh^{2} + 384d^{2}f^{2}h^{2} - 432d^{2}fg^{2}h + 81d^{2}g^{4} - \\ &\quad 432de^{2}fh^{2} + 18de^{2}g^{2}h + 240def^{2}gh - 54defg^{3} - 48df^{4}h + 12df^{3}g^{2} + \\ &\quad 81e^{4}h^{2} - 54e^{3}fgh + 12e^{3}g^{3} + 12e^{2}f^{3}h - 3e^{2}f^{2}g^{2})^{1/2})^{1/3} - \\ &\quad \frac{2}{3}(12dh - 3eg + f^{2})/(h(-288dfh + 108dg^{2} + 108e^{2}h - 36efg + 8f^{3} + \\ 12(-768d^{3}h^{3} + 576d^{2}egh^{2} + 384d^{2}f^{2}h^{2} - 432d^{2}fg^{2}h + 81d^{2}g^{4} - \\ \\ &\quad 432de^{2}fh^{2} + 18de^{2}g^{2}h + 240def^{2}gh - 54defg^{3} - 48df^{4}h + 12df^{3}g^{2} + \\ \end{aligned}$$

$$\begin{split} 81e^4h^2 &- 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)^{1/2})^{1/3}) + \\ &(\frac{fg}{h^2} - \frac{2e}{h} - \frac{g^3}{4h^3})/(\frac{g^2}{4h^2} - \frac{2f}{3h} + \frac{1}{6h}(-288dfh + 108dg^2 + 108e^2h - 36efg + 8f^3 + 12(-768d^3h^3 + 576d^2egh^2 + 384d^2f^2h^2 - 432d^2fg^2h + 81d^2g^4 - 432de^2fh^2 + 18de^2g^2h + 240def^2gh - 54defg^3 - 48df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)^{1/2})^{1/3} + \\ &\frac{2}{3}(12dh - 3eg + f^2)/(h(-288dfh + 108dg^2 + 108e^2h - 36efg + 8f^3 + 12(-768d^3h^3 + 576d^2egh^2 + 384d^2f^2h^2 - 432d^2fg^2h + 81d^2g^4 - 432de^2fh^2 + 18de^2g^2h + 240def^2gh - 54defg^3 - 48df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3f^3h - 3e^2f^2g^2)^{1/2}h^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2h + 81d^2g^4 - 432de^2fh^2 + 18de^2g^2h + 240def^2gh - 54defg^3 - 48df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)^{1/2}h^3)h^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 384d^2f^2h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 38df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 36df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 36df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 36df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 36df^4h + 12df^3g^2 + 81e^4h^2 - 54e^3fgh + 12e^3g^3 + 12e^2f^3h - 3e^2f^2g^2)h^2 + 36df^4h + 36df^2gh - 54defgh + 36df^2gh - 54defgh + 36df^2gh - 54defgh + 36df^2gh - 54defgh + 36df^2gh - 36df$$

Using the solutions for the roots of quartic equations, the solutions for the Johnson-Neyman boundary of significance for a test of omnibus group differences in the case of three groups are well defined.

Though these equations are notably complicated, they are not too unwieldy to be programmed into a computer program, such as an SPSS or SAS macro or R-package, to solve for the Johnson-Neyman boundaries of significance for linear regression problems with a continuous moderator and a three-group categorical variable. A computer program that implements this solution would be greatly useful to researchers interested in omnibus group differences which are moderated by a continuous variable. These solutions will be able to inform them of the range of the moderator variable which defines significant group differences and non-significant group differences.

Though this is the first time an algebraic solution has been derived for the threegroups case, it would be ideal to provide a general solution for any number of groups. In order to investigate this as a possibility, I perform a similar derivation using the same equations and an expanded contrast matrix for the four-group case.

#### Four Groups 4.2

In order to define the Johnson-Neyman boundaries for the four group case, the models to be compared should first be defined. Because there are four groups, the effect of group will be coded into three dummy coded variables,  $D_1$ ,  $D_2$ , and  $D_3$ . Model 2 will represent the situation in which the effect of group as represented by the dummy coded variables is allowed to vary as a linear effect of a moderator variable M.

Model 2: 
$$Y_i = b_0 + \Theta_{D_1 \to Y|M} D_{1i} + \Theta_{D_2 \to Y|M} D_{2i} + \Theta_{D_3 \to Y|M} D_{3i} + b_4 M_i + \epsilon_i$$
 (4.4)  
 $\Theta_{D_1 \to Y|M} = b_1 + b_5 M_i$ 

-

$$\Theta_{D_1 \to Y|M} = b_1 + b_5 M_i$$
$$\Theta_{D_2 \to Y|M} = b_2 + b_6 M_i$$
$$\Theta_{D_3 \to Y|M} = b_3 + b_7 M_i$$

Under the null hypothesis, that there are no group differences when M = m, i.e. each of  $\Theta_{D_1 \to Y|M=m}$ ,  $\Theta_{D_2 \to Y|M=m}$ , and  $\Theta_{D_1 \to Y|M=m}$  are zero.

$$0 = b_1 + b_5 m$$
$$0 = b_2 + b_6 m$$
$$0 = b_3 + b_7 m$$

This implies

$$b_1 = -b_5 m$$
$$b_2 = -b_6 m$$
$$b_3 = -b_6 m$$

To get Model 1, plug in these contraints to Equation 4.4.

Model 1:

 $Y_i = b_0 + (-b_5m + b_5M_i)D_{1i} + (-b_6m + b_6M_i)D_{2i} + (-b_7m + b_7M_i)D_{3i} + b_4M_i + \epsilon_i$ 

Reordering and grouping terms results in

Model 1: 
$$Y_i + b_0 + (M_i - m)b_5D_{1i} + (M_i - m)b_6D_{2i} + (M_i - m)b_7D_{3i} + b_4M_i + \epsilon_i$$

Constraining the conditional effect of each dummy coded variable on Y to be zero at m results in a model which includes the product of the re-centered M variable and each dummy coded variable as well as the M variable.

To derive the Johnson-Neyman boundaries of significance, apply Equation 4.1 to assess change in model fit, using the new X,  $\hat{\beta}$ , L, and  $\Sigma_{\hat{\beta}}$  matrices specific to the four group case.

$$X = \begin{bmatrix} 1 & D_{11} & D_{21} & D_{31} & M_1 & D_{11}M_1 & D_{21}M_1 & D_{31}M_1 \\ 1 & D_{12} & D_{22} & D_{32} & M_2 & D_{12}M_2 & D_{22}M_2 & D_{32}M_2 \\ \vdots & \vdots \\ 1 & D_{1n} & D_{2n} & D_{3n} & M_n & D_{1n}M_n & D_{2n}M_n & D_{3n}M_n \end{bmatrix}$$
$$\hat{\beta}' = \begin{bmatrix} \hat{b}_0 & \hat{b}_1 & \hat{b}_2 & \hat{b}_3 & \hat{b}_4 & \hat{b}_5 & \hat{b}_6 & \hat{b}_7 \end{bmatrix}$$

$$\Sigma_{\hat{\beta}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & m & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & m & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & m \end{bmatrix}$$

$$\Sigma_{\hat{\beta}} = \begin{bmatrix} v_0 & c_{01} & c_{02} & c_{03} & c_{04} & c_{05} & c_{06} & c_{07} \\ c_{01} & v_1 & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} & c_{17} \\ c_{02} & c_{12} & v_2 & c_{23} & c_{24} & c_{25} & c_{26} & c_{27} \\ c_{03} & c_{13} & c_{23} & v_3 & c_{34} & c_{35} & c_{36} & c_{37} \\ c_{04} & c_{14} & c_{24} & c_{34} & v_4 & c_{45} & c_{46} & c_{47} \\ c_{05} & c_{15} & c_{25} & c_{35} & c_{45} & v_5 & c_{56} & c_{57} \\ c_{06} & c_{16} & c_{26} & c_{36} & c_{46} & c_{56} & v_6 & c_{67} \\ c_{07} & c_{17} & c_{27} & c_{37} & c_{47} & c_{57} & c_{67} & v_7 \end{bmatrix}$$

Based on these equations, the product of L' and  $\hat{\beta}$  define the model constraints of interest.

$$L'\hat{\beta} = \begin{bmatrix} \hat{b}_1 + \hat{b}_5m\\ \hat{b}_2 + \hat{b}_6m\\ \hat{b}_3 + \hat{b}_7m \end{bmatrix}$$

Applying Equation 4.1 to the above defined matrices

$$\begin{split} (L'\hat{\beta})'(L'\Sigma_{\hat{\beta}}L)^{-1}(L'\hat{\beta}) &= \\ & | L'\Sigma_{\hat{\beta}}L |^{-1} \left[ (\hat{b}_1 + \hat{b}_5m)^2 [(v_2 + 2c_{26}m + v_6m^2)(v_3 + 2c_{37}m + v_7m^2) - (c_{23} + c_{36}m + c_{27}m + c_{67}m^2)^2 ] - (\hat{b}_1 + \hat{b}_5m)(\hat{b}_2 + \hat{b}_6m) [(c_{12} + c_{25}m + c_{16}m + c_{56}m^2)(v_3 + 2c_{37}m + v_7m^2) + (c_{13} + c_{35}m + c_{17}m + c_{57}m^2)(c_{23} + c_{27}m + c_{36}m + c_{67}m^2) ] + \\ & (\hat{b}_1 + \hat{b}_5m)(\hat{b}_3 + \hat{b}_7m) [(c_{12} + c_{25}m + c_{16}m + c_{56}m^2)(c_{23} + c_{36}m + c_{27}m + c_{67}m^2) - \\ & (c_{13} + c_{25}m + c_{17}m + c_{57}m^2)(v_2 + 2c_{26}m + v_6m^2) ] - (b_1 + b_5m)(b_2 + b_6m) [(c_{12} + c_{25}m + c_{16}m + c_{56}m^2)(v_3 + 2c_{37}m + v_7m^2) + (c_{13} + c_{35}m + c_{17}m + c_{57}m^2)(c_{23} + c_{27}m + c_{36}m + c_{67}m^2) ] + (\hat{b}_2 + \hat{b}_6m)^2 [(v_1 + 2c_{15}m + v_5m^2)(v_3 + 2c_{37}m + v_7m^2) - \\ & (c_{13} + c_{35}m + c_{17}m + c_{57}m^2)^2 ] + (\hat{b}_2 + \hat{b}_6m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) + (c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] + \\ & (\hat{b}_1 + \hat{b}_5m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) + (c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] + \\ & (\hat{b}_1 + \hat{b}_5m)(\hat{b}_2 + \hat{b}_6m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) - \\ & (c_{13} + c_{35}m + c_{17}m + c_{57}m^2)^2 ] + (\hat{b}_2 + \hat{b}_6m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] \\ & (\hat{b}_1 + \hat{b}_5m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] ] \\ & (\hat{b}_2 + \hat{b}_6m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] \\ & (\hat{b}_1 + \hat{b}_2m)(\hat{b}_2 + \hat{b}_6m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] ] \\ & (\hat{b}_1 + \hat{b}_2m)(\hat{b}_2 + \hat{b}_6m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] \\ & (\hat{b}_2m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{57}m^2) ] \\ & (\hat{b}_1 + \hat{b}_2m)(\hat{b}_2m)(\hat{b}_3 + \hat{b}_7m) [(c_{13} + c_{35}m + c_{17}m + c_{17}m + c_{17}m + c_{17}m^2) ] \\ & (\hat{b}_1 + \hat{b}_2m)(\hat{b}_1 + \hat{b}_2m)(\hat{b}_2m)(\hat{b}_1 + \hat{b}_7m) [(c_{13} + c_{13}m + c_{17}m$$

$$\begin{split} &c_{57}m^2)(c_{12}+c_{16}m+c_{25}m+c_{56}m^2)-(v_1+2c_{15}m+v_5m^2)(c_{23}+c_{36}m+c_{27}m+c_{67}m^2)]+(\hat{b}_1+\hat{b}_5m)(\hat{b}_3+\hat{b}_7m)[(c_{12}+c_{25}m+c_{16}m+c_{56}m^2)(c_{23}+c_{36}m+c_{27}m+c_{67}m^2)-(c_{13}+c_{35}m+c_{17}m+c_{57}m^2)(v_2+2c_{26}m+v_6m^2)]+(\hat{b}_2+\hat{b}_6m)(\hat{b}_3+\hat{b}_7m)[(c_{13}+c_{35}m+c_{17}m+c_{57}m^2)(c_{12}+c_{16}m+c_{25}m+c_{56}m^2)-(v_1+2c_{15}m+v_5m^2)(c_{23}+c_{36}m+c_{27}m+c_{67}m^2)]+(\hat{b}_3+\hat{b}_7m)^2[(v_1+2c_{15}m+v_5m^2)(v_2+2c_{26}m+v_6m^2)-(v_1+2c_{15}m+v_5m^2)(v_2+2c_{26}m+v_6m^2)-(c_{12}+c_{25}m+c_{16}m+c_{36}m^2)^2]]\end{split}$$

Where

$$|L'\Sigma_{\hat{\beta}}L| = (v_1 + 2mc_{15} + v_5m^2)(v_2 + 2c_{26}m + v_6m^2)(v_3 + 2c_{37}m + v_7m^2) - (v_1 + 2c_{15}m + v_5m^2)(c_{23} + c_{36}m + c_{27}m + c_{67}m^2)(c_{23} + c_{27}m + c_{36}m + c_{67}m^2) - (c_{12} + c_{25}m + c_{16}m + c_{56}m^2)^2(v_3 + 2c_{37}m + v_7m^2) + 2(c_{12} + c_{25}m + c_{16}m + c_{56}m^2)(c_{23} + c_{36}m + c_{27}m + c_{67}m^2)(c_{13} + c_{17}m + c_{35}m + c_{57}m^2) - (c_{13} + c_{17}m + c_{35}m + c_{57}m^2)(v_2 + 2c_{26}m + v_6m^2)$$

Again, F is defined as a polynomial function of m as in the three condition case. A polynomial for which the roots would determine the Johnson-Neyman boundary of significance can be defined by setting F to its critical value given the degrees of freedom in this problem, and setting one side of the equation to zero. In doing this (though excluded for the sake of space) this polynomial is an eighth degree polynomial in m. By the Abel-Ruffini theorem (1824) there is no closed form algebraic solution for the roots of this equation, thus precluding the derivation of the solutions for the Johnson-Neyman boundary of significance. Hunka (1995) and Hunka and Leighton (1997) proposed the use of *Mathematica* to apply these matrix calculations given a specific data set. Their examples, however, only examined up to three-groups, and *Mathematica* cannot calculate the roots of all equations of degree five or higher ("Roots", n.d.). This means that the methods proposed by Hunka and colleagues are limited to three-groups or fewer.

Without a method for finding the Johnson-Neyman boundary of significance in the four-condition case, it may seem that a solution for finding these boundaries in a general number of groups is far out of reach. However, it is possible to probe interactions between continuous variables and categorical variables of any number of categories using the simple-slopes method. A computer program could repeatedly probe the effect of some categorical variable, honing in on the point at which group differences in Y are exactly significant, thus defining the Johnson-Neyman region of significance without a closed-form solution. For my thesis I developed such a tool, available in two popular statistical packages to increase the potential user base of the tool.

# Chapter 5: OGRS: An Iterative Tool for Finding Johnson-Neyman Regions of Significance for Omnibus Group Differences

OGRS (<u>O</u>mnibus <u>G</u>roups <u>R</u>egions of <u>S</u>ignificance) is an easy to use tool which can probe interactions between a categorical independent variable and a continuous moderator. It is available for two popular statistical packages, SPSS and SAS. After executing the OGRS macro, users will be able to specify a single OGRS command line that specifies all the information needed to do the analyses, while requiring no mathematics on the part of the user. The tool will produce typical regression output, the Johnson-Neyman boundaries of significance, and a table which describes how the effect of the independent variable changes across the observed range of the moderator. See Appendix A and B for SPSS code and documentation, and Appendix C and D for SAS code and documentation.

## 5.1 Program Inputs

Each language has a different syntax structure for the OGRS command line, but the required inputs are the same across both the SPSS and SAS versions. The only exception is that SAS requires a data file name, whereas SPSS assumes that the active dataset is the one being analyzed. The only required inputs are the variables involved in the analysis. Optional inputs include confidence level, convergence criteria, and number of initial iterations in the Johnson-Neyman algorithm.

#### 5.1.1 Required Inputs

OGRS requires only one variable as the independent variable in the subcommand X. Researchers should save their independent variable as one variable with each group having a unique code (e.g., 1 = Protestant, 2 = Catholic, 3 = Jewish, etc). OGRS recodes this variable into k - 1 dummy codes internally for use in regression. Only one variable each will be accepted as input for the moderator and for the outcome variable. Additional covariates can also be included by specifying them in the **vars** command, but not assigning them to any specific role (X, Y, or M). There is no limit to the number of covariates allowed in the model.

Below are examples of the base command line for each language.

```
SPSS OGRS vars = var1 var2 var3 var4 var5 /X = var1 /M = var2
    /Y = var3.
SAS %OGRS (data = datafile, vars = var1 var2 var3 var4 var5,
    X = var1, M = var2, Y = var3);
```

The list of variables in the **vars** subcommand, specifies all the variables that are used in the regression. Including this command allows researchers to specify additional covariates that do not play the role of independent variable, moderator, or outcome.

#### 5.1.2 Optional Inputs

A few options have been built into OGRS to increase its flexibility and allow users to troubleshoot issues with the Johnson-Neyman algorithm. Researchers can specify the level of confidence, the convergence criteria used by the Johnson-Neyman algorithm, the number of initial iterations in the Johnson-Neyman algorithm, and the number of decimal places printed in the output. Each of these options has a default value that can be overridden by specifying the name of the subcommand then an equals sign and the new value which is desired (e.g., CONF = 92).

#### Confidence Level

Confidence level is used in two parts of the OGRS routine. In the regression output, confidence intervals are provided alongside each of the estimated regression coefficients. The confidence level specified in the OGRS command line is used to determine the level of confidence at which these intervals are calculated. The default is 95. The users can specify any confidence level greater than 50 and less than 100 in the CONF subcommand. The second part of the OGRS routine which uses confidence level is the Johnson-Neyman algorithm. The Johnson-Neyman algorithm searches for the point along the continuous range of the moderator at which the effect of the independent variable on the outcome variable is exactly *statistically significant*. This significance level is determined by the confidence level specified in the CONF subcommand. For example, when the confidence level is set at 90, then the p-value corresponding to the effect of the independent variable on the outcome variable at the Johnson-Neyman boundary of significance will be .10. Similarly if the confidence level is specified to be 99, the p-value will be .01.

#### **Convergence** Criteria

The convergence criteria is used to calibrate how close the Johnson-Neyman algorithm gets to the exact answer. The default is as precise as the language is capable: .00000001 (up to eight decimal places in both SPSS and SAS). However, if a researcher is not particularly concerned with the exactness of the solution, then they can specify a more relaxed convergence criteria.

The convergence criteria means different things in each of the languages. In SAS, OGRS looks to converge to a critical F statistic, but in SPSS, OGRS converges to an  $\alpha$  level (reasons for this are discussed in the next section). The statistic to which the routine aims to converge, whether it be an F statistic or an  $\alpha$  value, will be called the *criterion statistic*, and the desired value of that statistic will be called the *criterion statistic*, and the languages, the default is to find a point that has a corresponding criterion statistic which is within eight decimal places of the criterion value. By specifying a different value in the CONVCRIT subcommand, a solution that is that distance (or a smaller distance) from the criterion value will be deemed acceptable. For example if a user specified CONVCRIT = .0001 then a solution within four decimal points of the criterion value would be acceptable. This can be useful for reducing runtime, as will be discussed later, or if the measurement scale of the variable is not particularly precise, so that the solution does not need to be particularly precise.

#### Initial Iterations

As discussed in Section 5.5, the Johnson-Neyman algorithm begins by dividing the range of the moderator into sections. The number of sections the space is divded into is determined by the **iter** subcommand. The default for the number of sections is 50 + k \* 10, where k is the number of groups in the independent variable. As will be discussed later, there is a trade off between speed of the program and finding all Johnson-Neyman solutions. Researchers who are particularly concerned about making sure they find all the solutions, but do not care about how long it takes the program to run, might consider setting the *iter* subcommand to a large number (e.g., 10000).

#### Decimals

The DECIMALS subcommand can be used to specify how many decimal places are printed in the output. The default for this setting is F10.4 in SPSS and 10.4 in SAS. This argument sets both the number of characters used to represent the number (as set by the number before the decimal point in the subcommand) and the number of decimal places to display to the right of the decimal point (as set by the number after the decimal point in the subcommand). For example DECIMALS = F8.4 would specify that up to eight characters should be used to represent a number, and the number should display up to four places to the right of the decimal point.

## 5.1.3 Command Line Example

Below is an example of the OGRS command line using all the different subcommands.

In this command, var1 is the independent variable and dummy coded into k - 1 variables, where k is the number of groups in var1. The moderator and outcome variables are var2 and var3, respectively. Two covariates, var4 var5, are included in the model. All confidence intervals will be 80% confidence intervals, and the Johnson-Neyman algorithm will find points along the moderator where the effect of

the independent variable on the outcome is exactly statistically significant at  $\alpha = .20$ . Acceptable solutions for the algorithm will be within .000001 of the criterion value, whether it is an *F*-statistic in SAS or a *p*-value in SPSS. Initially, the algorithm will divide the range of the moderator into 1000 sections, which will be used to find the solutions, as described below. All output will be reported up to two decimal places.

## 5.2 Internal Processes

The OGRS routine uses the information provided in the command line to calculate all the information needed to create the output. For example, OGRS can detect the number of groups in the variable input in the X subcommand. This will imply the number of groups, which will be important throughout. Additionally the range of the moderator will be defined by the variable input in the M subcommand. The iterative approach to the Johnson-Neyman procedure will only search within the observed range of the moderator, as this is the only well-defined space where the researcher has measurements.

## 5.2.1 Regression Results

After recoding the variable specified in the X subcommand, the program will estimate the regression model using all the variables in the vars subcommand with the exception of the variable in the Y subcommand, to predict the variable specified in the Y subcommand, including all product terms between the M variable and the codes representing X. All regression coefficients, standard errors, and inferential statistics including t and p-values and confidence intervals are computed and appear in the output. Additionally, a section of output at the bottom of the regression results is dedicated to the test of interaction, comparing the contingent (including all product terms between the dummy codes for X and M) and non-contingent models (not including any of the product terms).

## 5.2.2 Finding Johnson-Neyman Solutions

Since it is not possible to directly solve for M such that the associated F statistic reflecting group differences is exactly significant, an alternative is to search for values of M such that this is true. An iterative method to examine a variety of values of M can be used to complete this task. The method for finding the Johnson-Neyman boundaries of significance is based on the bi-section method, a popular method in computer science for finding roots of polynomials.

#### The Bi-Section Method

The bi-section method is a method for iteratively searching for the point along a closed range where some continuous function equals a prespecified value. In this case we are looking at the function which determines either the *p*-value associated with the test of the effect of X on Y at different M values (SPSS), or the associated F statistic (SAS). Either way, these functions are both continuous.

The intermediate value theorem states that if the values of this function at the boundaries of the range of the domain of the function span the criterion value, then there is some point where the function is exactly the criterion value within that range. In our case, if we can find two values of the moderator where the criterion statistic is below the criterion value, and another value of the moderator where the criterion statistic is above the criterion value, then somewhere in between those points, the F statistic is exactly the criterion value. This is the principle upon which the bi-section method is based.

The bi-section method assumes that you start with a continuous function where the range of the domain is such that the value of the function at the minimum of the domain is less than (or greater than) the criterion value, and the value of the function at the maximum of the domain is greater than (or less than) the criterion value value. Under this assumption, the bi-section method continuously divides the space in half, evaluating the function at the divided point, then chooses a half which still spans the criterion value until a point which is close enough the criterion value is found.

In the Johnson-Neyman algorithm, we cannot ensure that we have two points which span the criterion value (as there may be no such points), so we divide the space up in small sections, increasing the likelihood that we find two points which span the criterion value, if such points exist. The algorithm then repeatedly applies the bisection method to find the Johnson-Neyman boundaries of significance.

#### Implementation in OGRS Routine

Using the results from the regression analysis, all of the matrices used in Equation 4.1 are completely known with the exception of L, which contains an unknown m. To search the space along the moderator's range, a jump parameter is specified that divides the range of the moderator. The jump parameter is the width of jump required to span the space of the moderator in a set number of jumps equal to the **iter** subcommand, where the default is 50 + 10 \* k, where k is the number of groups in the independent variable.

The program will identify the range of the moderator and divide this range into sections, solving for the statistical significance of the group differences in Y at each endpoint of the sections. The program will then identify specific sections that transition between significance and non-significance (i.e. sections where one endpoint has a criterion statistic which is greater than the criterion value and one endpoint has a criterion statistic which is less than the criterion value). These are the sections within which the intermediate value theorem apply, and thus the bi-section method is guaranteed to find a solution. Each section which qualifies is broken up again in a similar manner, solving for the criterion statistic at each of the endpoints of the new sections. This process will repeat until each potential area of transition has resulted in a solution which is close enough to the criterion statistic (F in SAS and  $\alpha$  in SPSS), as defined by the convergence criteria. The criterion value  $\alpha$  is defined by the CONF subcommand, where  $\alpha = 1 - \text{CONF}/100$ . This program will sophisticatedly search the space along the moderator, rather than inefficiently searching the entire space at an overly fine precision.

The program begins by defining a matrix where each row represents a point along the moderator M. The distance between these points is determined by the jump parameter. At each point, the significance of the group differences is evaluating using Equation 4.1, providing an F-statistic reflecting the degree of difference in the groups on the outcome variable at that point on the moderator variable. Depending on the program, either the F statistic is compared to the critical F with k-1 and N-p-1degrees of freedom at the  $\alpha$  level, or the F statistic is used to compute a p-value which is then compared to the  $\alpha$  level.

The SAS version of OGRS tests convergence based on a critical F statistic. F statistics are less variable in order of magnitude than p-values and so the convergence criteria means a similar degree of misfit regardless of the criterion F statistic used. Calculation of the critical F to which the program converges requires a function for the inverse cumulative distribution function of the F distribution. This is something

that SAS has built into PROC IML, which is the language used to program OGRS. However, the SPSS matrix language does not have a similar function. I investigated a few approximations to this function (Abamowitz & Stegun, 1964; Bratley, Fox, & Schrage, 1983); however, the approximations were off by enough that it seemed more reasonable to use the  $\alpha$  value instead of the approximate critical-F.

Areas of transition are identified by tagging (in an additional column of the matrix) points where the criterion statistc was less than the specified criterion value in the row above and is now greater than the specified criterion value, or rows where the row above was greater than the criterion value and is now less than the criterion value (i.e. the statistic has transitioned from significant to non-significant or non-significant to significant). The program then checks if either of the two rows involved in the transition converge based on the convergence criteria, and if either does, it does not investigate this area further. When neither of these points is close enough to converge, the program will examine this space on the moderator in more detail.

When a transition area is identified, the program identifies the boundaries of M in this area and divides this range using the same number of jumps as before. Within this space all previous calculations are repeated (Using Equation 4.1 to calculate an F-statistic, and p-value) for each point. This new matrix of results is then inserted into the original results matrix, and the program continues to look for other areas of transition.

Areas are repeatedly searched with greater and greater precision until a solution which is close enough to the criterion value based on the convergence criteria is found. After this solution is found, the program will move on to a new transition area, if one exists. Depending on the number of groups, the number of potential transition areas will be limited (with only two potential transitions in 2 group, and 4 potential transitions in 3 groups, etc). The program will continue until each area of transition has a subsequent solution. There is currently no maximum number of times the program can divide up a specific space within OGRS.

#### 5.3 **Program Outputs**

Figure 6.1 provides an example of the output from OGRS for SPSS. The program output includes regression results, Johnson-Neyman results, and a table which shows how the effect of the independent variable on the outcome changes across the moderator. The output begins with a section specifying the variables in the analyses, including X, M, Y, and any covariates. There is also a table which shows how X was dummy coded into k - 1 variables. Next there is a section with the regression results. This includes all the regression coefficient estimates, standard errors, t-statistics, pvalues, and confidence intervals. At the end of the regression results section is the results of comparing the model with no interactions to the model with interactions, and the associated test of significance which is a test of moderation.

The Johnson-Neyman results are presented with a table. The points of transition are printed above the table. After the transition points, a table of other points is provided to give the users a sense of the trends in the change in  $R^2$  and the associated F statistic across the range of M. Approximately 20 lines are printed in the table. This table could be used to graph the change in  $R^2$  or the associated F-statistic across the range of the moderator in order to describe how the effect of the independent variable on the outcome variable changes across this range.

### 5.4 **Programming Decisions**

Many programming decisions were made through testing and limitations of languages used. I will first outline the major decisions, then overview some of the testing processes and performance outcomes which drove these decisions.

One of the major concerns was how the program would identify when there are no Johnson-Neyman solutions. OGRS probes the initial points as determined by the iter subcommand, and if these points do not identify any transition points, then the program is complete and prints a message which states there are no Johnson-Neyman solutions. During testing, most solutions were identified even with a very small number of initial iterations. In most tested cases, all solutions were identified using only three iterations. However, some specific cases emerged where two solutions were very close together, and thus were not identified with a small number of iterations. The largest number of iterations that did not find all solutions in all test cases was 30. Additionally, the number of possible solutions increases as the number of groups increases. This led to the decision to set the default number of iterations to 50 + 10k. This would allow for well over 30, which was the minimally sufficient case in testing. Additionally, as will be seen in the run-time performance results, having too many iterations caused the program to run quite slowly. It is very difficult to choose a default for the number of iterations such that there are enough to identify all transition points but not so many as to cause the program to run slowly. This led me to add in the option for researchers to change the number of iterations. That way if the program is running particularly slowly, they can decrease the number of iterations, or if they are concerned that the algorithm missed some solutions, they can increase the number of iterations.

When a transition point is identified and the area is magnified, it is possible to have multiple converging answers all adjacent to each other occur. Essentially, in this case the program has magnified the space so much that many of the points converge. This happened fairly frequently because the distance of the jump parameter gets smaller and smaller as an area is magnified repeatedly. In order to deal with multiple converging answers, the program searches for the two answers which straddle the criterion value (one above and one below) and chooses the closest (with respect to the criterion statistic) of these two points, as they will be the closest overall of the set of converging answers.

As discussed above, the value to which the program converges is either the Fstatistic (SAS) or the  $\alpha$  level. The F-statistic is preferable, because regardless of the
data, the order of magnitude of an F-statistic stays in a fairly limited range (about 1 - 10). An  $\alpha$  level though often varies from .1 - .001, which spans three orders of
magnitude compared to one order of magnitude of the F-statistic. This is an issue
when dealing with a convergence criteria. An F-statistic being off by .001 is a roughly
comparable error regardless of the the value of the critical F, but a p-value being off
by .001, when the critical  $\alpha$  is .0001 is a very large error compared to when the
critical  $\alpha$  is .05. All the approximations which were tested for the inverse cumulative
distribution function for the F distribution to be implemented in the SPSS version
of OGRS were off by .1 - .3 which can be up to 4% of the F-distribution. For this
reason the  $\alpha$  value was chosen as the criterion statistic for the SPSS version of OGRS,
but the default convergence criteria was set as low as possible (.00000001). This will
help to avoid large errors even with fairly large confidence levels. Based on testing,

convergence criteria influenced run time, but not drastically, so it seemed reasonable to set this value to be very low.

Next, I will discuss some of the program tests which were completed in order to understand the limitations of OGRS as well as make some of the programming decisions above.

## 5.5 **Program Performance**

There were three major aspects of the program that I wanted to test. The first two are accuracy related: 1) When does the program miss certain answers or get answers that are incorrect, and 2) How accurate are the answers that the program gets. The third aspect of the program is understanding how long it takes to run in a variety of circumstances and understanding what influences how long the program runs.

## 5.5.1 Accuracy

Perhaps the most important characteristic of an approximation is that is it accurate enough to be useful. Though I cannot decide for potential users whether or not this method is accurate *enough* to be useful, I can provide some information about how accurate this method is, and potential users can decide whether this seems accurate enough.

Accuracy comes in two forms with this algorithm. The algorithm must identify the correct transition points (and not points that are not transition points) and it must estimate those transition points well. Different parts of the algorithm come into play for these two different types of accuracy so I will treat them separately.

#### **Finding Solutions**

Finding the correct solutions is determined by whether or not the initial number of iterations is large enough to ensure there are points spanning each transition point. Having these spanning points is what ensures the bi-section method will work, but there is no way to know for sure if all transition points have been identified. If two solutions are contained within one region of the initial division of the range of the moderator, then those solutions will not be found. Because of this it is important to have a sufficient number of initial iterations.

To test how many iterations seems sufficient, I used datasets with 3, 5, and 7 groups, sample sizes of 20, 100, and 1000, and covergence criteria of  $10^{-8}$  and  $10^{-4}$ , and iterations of 3, 4, 5, 10, 20, 30, 40, 50, 100, 1000, and 10000. These datasets were also used to test runtimes. In Tables 5.2 to 5.4 there are rows with asterisks which indicate the iteration numbers which failed to find the correct Johnson-Neyman boundaries of significance. As can be seen from Tables 5.2 to 5.4 the largest value which failed to find the correct Johnson-Neyman boundary in any of the conditions was 30. Though, this may be an artifact of the data generation procedure, and there is no true lower bound on how close two Johnson-Neyman boundaries could be. So there is no way to know completely that all solutions have been found, regardless of the number of initial iterations selected.

Because 30 was the upper bound of the number of iterations which did not find all Johnson-Neyman boundaries of significance when testing, I selected 50 as the default minimum number of iterations with additional iterations added based on the number of groups. More groups have more possible solutions, and therefore two solutions may be more likely to be close to each other. When using OGRS, I also recommend making a visualization of the effect of the relationship between X and Y across M, such that you might be able to notice if a two transition points have been skipped, as this would likely show up on a graph as a quick change in the group differences.

There were no situations where a solution was found that was not a Johnson-Neyman transition point. Because of the way the algorithm is written there is no reason to suspect this might occur. The major issue of inaccuracy that could occur is for two transition points to be skipped.

#### Accuracy of Solutions

Though this algorithm has been developed to provide solutions to the Johnson-Neyman boundaries of significance for cases where there is no previously available solution, it is important to test this algorithm in situations where the solutions are known. Testing against known solutions allows us to understand better how accurate the solutions are in known cases, and how accurate the solutions are even in the unknown cases. Based on our previous discussion we know that closed form solutions are available in the two and three condition case.

Table 5.1 provides the closed form solution for two randomly generated datasets. The first dataset had two groups, and was generated to have two Johnson-Neyman solutions. The second dataset had three groups, and was generated to have two Johnson-Neyman solutions. The "true" solutions were calculated using Maple, an analytical software with highly accurate algorithms for computing the roots of polynomials. OGRS was used in SPSS and SAS with convergence criteria ranging from  $10^{-2}$  to  $10^{-8}$ . In the cells of Table 5.1 are two values, the first value is the solution from OGRS printed to eight decimal places, the second value is the proportion of the range of the moderator by which the OGRS solution differs from the Maple solution.

For example, if the moderator ranged from -1 to 1, then the range would be 2. If the Maple solution was 1.4 and the OGRS solution was 1.35. Then the difference between the Maple solution and the OGRS solution would be 1.4 - 1.35 = .05 which is .05/2 = .025 or 2.5% of the range of the moderator. I used this statistic to describe the error in the OGRS algorithm, as it is reasonable to suspect the amount of error in the algorithm will be directly proportional to the scale of the moderator.

Based on Table 5.1 it seems that the algorithm is fairly accurate with the maximum error being less than .5% of the range of the moderator. It does seem that the SAS algorithm is slightly more accurate than the SPSS algorithm, particularly at higher values of the convergence criteria. This is likely related to the different criterion statistics used, where SAS uses an *F*-statistic and SPSS uses an  $\alpha$  value. Additionally, as expected the algorithm is more accurate when a lower convergence criteria is used.

It seems that the algorithm performs admirably, even with very high convergence criteria. For researchers who believe that this level of accuracy is sufficient, they could use OGRS to solve for Johnson-Neyman boundaries of significance using this tool.

Though we cannot test for the situations of four groups or more, it seems reasonable to assume that the algorithm would remain accurate when there are more groups. The major issue of additional groups is missing potential transition points, and increased run time.

#### 5.5.2 Run Time

Run times were recorded for both the SPSS and SAS version of OGRS using 27 different datasets. The datasets were randomly generated in GAUSS to be of varying group number, sample size, and number of Johnson-Neyman solutions. Three

|             |                 |             | SPSS Sc     | olutions    |             |              | SAS So      | lutions                 |              |
|-------------|-----------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------------------|--------------|
|             |                 |             | Convergen   | ce Criteria |             |              | Convergene  | ce Criteria             |              |
| No. Groups  | Maple Solutions | $10^{-8}$   | $10^{-6}$   | $10^{-4}$   | $10^{-2}$   | $10^{-8}$    | $10^{-6}$   | $10^{-4}$               | $10^{-2}$    |
| 2           | -0.5953813605   | -0.59538141 | -0.59538141 | -0.59557986 | -0.60329744 | -0.59538137  | -0.59538141 | -0.59538141             | -0.59557986  |
|             |                 | 1.30896E-08 | 1.30896E-08 | 5.24907E-05 | 0.002093306 | 2.51215E-09  | 1.30896E-08 | 1.30896 E-08            | 5.24907E-05  |
|             | 0.4201202797    | 0.42012028  | 0.42012018  | 0.42005403  | 0.42314106  | 0.42012028   | 0.42012028  | 0.42012018              | 0.42005403   |
|             |                 | 7.93312E-11 | 2.63644E-08 | 1.75189E-05 | 0.000798807 | 7.93312E-11  | 7.93312E-11 | $2.63644 \text{E}{-}08$ | 1.75189 E-05 |
| 33          | -0.393254492    | -0.39325448 | -0.39325335 | -0.393478   | -0.40605835 | -0.39325451  | -0.39325448 | -0.39325335             | -0.393478    |
|             |                 | 3.02555E-09 | 2.97756E-07 | 5.82963E-05 | 0.003339548 | 4.79915E-09  | 3.02555E-09 | 2.97756E-07             | 5.82963E-05  |
|             | 1.032329674     | 1.03232966  | 1.03233182  | 1.03169531  | 1.03169531  | 1.03232967   | 1.03232966  | 1.03233182              | 1.03169531   |
|             |                 | 3.65153E-09 | 5.59727E-07 | 0.000165457 | 0.000165457 | 1.04329 E-09 | 3.65153E-09 | 5.59727E-07             | 0.000165457  |
| -<br>-<br>- |                 |             | -           | •           | Ē           | -            |             |                         |              |

| SAS       |
|-----------|
| and       |
| SPSS      |
| for       |
| Solutions |
| Neyman    |
| Johnson-  |
| OGRS      |
| of        |
| Accuracy  |
| able 5.1: |
| Н         |

Solutions from SPSS and SAS using a variety of convergence criteria. The first value in each cell is the solution from OGRS to eight decimal places. The second value is the proportion of the range of the moderator by which the solution from OGRS differs from the Maple Solution.

different group numbers were used: 3, 5, and 7. Three sample sizes were used: 20, 100, and 1000. Finally there were three different numbers of solutions generated: 0, 1, and 2. Each dataset was analyzed 22 times in each language using each of two convergence criteria  $(10^{-8} \text{ and } 10^{-4})$  and each of 11 different initial iterations: 3, 4, 5, 10, 20, 30, 40, 50, 100, 1000, 10000.

Run times were recorded by hand on a cellphone stopwatch while running SPSS as there is not built in functional for timing in SPSS. The SAS program times each executed statement, so the times were recorded after each run. Both programs were run on a Dell Optiplex 745 computer running Windows 7 Enterprise with an Intel(R) Core(TM) 2 CPU processor. During the tests no other programs or applications were running.

Tables 5.2 to 5.4 contain all times for all conditions for both SPSS and SAS. Because times of less than 1 second by hand were fairly unreliable in SPSS, the time reported states "< 1". Minimum run time was .22 seconds (3 Groups, Sample Size 100, convergence criteria  $10^{-4}$ , SAS, 3 initial iterations). Maximum run time was 1104 seconds or 18.39 minutes (5 Groups, Sample Size 1000, Convergence criteria  $10^{-8}$ , SAS, 10000 initial iterations).

The major finding from this experiment was that smaller numbers of initial iterations took less time to run. However, smaller numbers of initial iterations are more likely to miss potential solutions. Balancing these two findings was important when setting the defaults for number of initial iterations. In general, a smaller number of initial iterations resulted in fewer probed points required to find a point which converged, leading to the quicker speed of these runs. Datasets with more groups and larger samples took longer to analyze. This is likely because the data matrix needed to be inverted is larger in both of these cases. Inverting large matrices is time consuming even for computers. Especially when the number of initial iterations was quite large, some of the larger datasets took multiple minutes to run. Interestingly, though SAS was typically faster than SPSS, in some of these large data and large initial iteration conditions, SPSS ran faster than SAS.

The number of solutions influenced run time slightly. When there are no solutions, the program only checks the initial iterations then exits. In this situation the program runs quite quickly, especially when there are few initial iterations. When there is one solution, fewer magnifications must occur compared to when there are two solutions, so typically more solutions resulted in higher run times.

Convergence criteria seemed to impact runtime slightly. With a higher convergence criteria, fewer magnifications are required, and the program can run more quickly. Though the program run more quickly with a higher convergence criteria, lowering the convergence criteria impacts the accuracy of the solutions, and so the default was set to the most accurate, as run times were still fairly reasonable under this condition. If a researcher is particularly concerned about runtime and is willing to sacrifice some accuracy, they can change the convergence criteria from the default.

Some of these run times are fairly unreasonable and might lead a user to assume that their computer has crashed or the program is not working. As such, I chose the initial value of iterations to reflect fairly reasonable run times. Even in the worst case scenario tested (N = 1000, 7 Groups, and 2 Solutions) the default initial iterations would be 120, which we would expect to run in about 6 - 12 seconds depending on the language and convergence criteria. Additionally, by allowing the user to specify the number of iterations, they can tailor the run time in cases where they have very large datasets or feel the program is likely to run slowly.

Overall, the runtimes informed the default convergence criteria and number of iterations. Keeping in mind a balance between accuracy and run time, I believe that aiming for the program to run in a few seconds in most small data situations and in under a minute in large data cases seemed reasonable. Researchers concerned that the program will run too long can change the defaults to their situation. The measured run times for this study were all on the same machine and are by no means universal. Some machines will run slower or faster. Users of OGRS can tailor their command line inputs to balance accuracy and speed on their own machine.

Next we will examine an application of OGRS to a real dataset. Through this example, users can see how what the OGRS output will look like and also how to interpret the output with respect to their research questions.
Run time in seconds from SPSS and SAS. Asterisks<sup>\*</sup> indicate runs which did not produce all Johnson-Neyman points.

|           | 3             |           | .30            | -      | .30            | √<br>1    | .58            | 1                     | .31            | √<br>1    | .36            | -1       | .33            |           | .33            | -1       | .22            |           | .44            | 1        | .30            | -1        | .41            | -1       | .30            |           | .45            |        | .41            | .25       | .11            | 1      | .72            |   | *          | <1*<br>.44*               |
|-----------|---------------|-----------|----------------|--------|----------------|-----------|----------------|-----------------------|----------------|-----------|----------------|----------|----------------|-----------|----------------|----------|----------------|-----------|----------------|----------|----------------|-----------|----------------|----------|----------------|-----------|----------------|--------|----------------|-----------|----------------|--------|----------------|---|------------|---------------------------|
|           | 4             | -         | .34 0          |        | .25 0          | -         | .47 0          | -                     | .28            | -         | .33 0          |          | .45 0          |           | .53 0          |          | .41 C          |           | .33            |          | .36 C          |           | .36 C          |          | .34 0          |           | .36 C          |        | .53 0          | .23 1     | .34 1          |        | .92 C          |   | ~<br>*-    | 1*<br>47* 0. <            |
|           |               | -         | .0             | -      | 50.            | -         | .0<br>0.       | -                     | 0.0            | -         | .0             | -        | 5<br>0.        | -         | 0.0            | -        | 0.             | -         | .0<br>8        | 1        | 4 0.           | -         | 0 0            | -        | .0<br>8        | -         | .0             |        | 0 6            | 1         | 0 1.           |        | 0.             |   | ∨<br>*_    | ×_*                       |
|           |               | $\vee$    | 0.3            | $\vee$ | 0.5            | V         | 0.3            | $\vee$                | 0.3            | $\vee$    | 0.3            | V        | 0.2            | $\vee$    | 0.3            | V        | 0.3            | $\vee$    | 0.2            | V        | 0.3            | $\vee$    | 0.3            | V        | 0.2            | $\vee$    | 0.6            | $\vee$ | 0.5            | 1.5       | 1.5            | V      | 0.0            |   | V<br>*     | * *<br>                   |
|           | 10            | <br>      | 0.30           | ~      | 0.38           | ~         | 0.34           |                       | 0.25           |           | 0.31           |          | 0.31           | ~<br>~    | 0.38           |          | 0.36           | ~<br>~    | 0.39           | ~        | 0.44           | ~         | 0.48           |          | 0.36           | ~         | 0.58           | ~<br>~ | 0.62           | 1.89      | 2.00           | 1.38   | 1.20           |   | 1.43       | 1.43<br>0.58              |
| so<br>so  | 20            | ч<br>Ч    | 0.27           | V      | 0.25           | V         | 0.31           | $\sim$                | 0.31           | $\sim$    | 0.42           | V<br>V   | 0.47           | V<br>V    | 0.42           | V<br>V   | 0.53           | V<br>V    | 0.30           | V        | 0.36           | V<br>V    | 0.30           | V<br>V   | 0.33           | -<br>V    | 0.67           | $\sim$ | 0.67           | 2.68      | 3.29           | 1.46   | 2.29           |   | 4.38       | 4.38<br>5.51              |
| Iteration | 30            | <br>      | 0.33           | <br>   | 0.36           | $\sim$    | 0.31           | $\sim$                | 0.31           | $\sim$    | 0.48           | -1<br>-1 | 0.34           | $\sim$    | 0.31           | -1<br>-1 | 0.31           | $\sim$    | 0.23           | $\sim$   | 0.42           | $\sim$    | 0.41           | -1<br>-1 | 0.26           | <br>V     | 0.98           | 1.21   | 0.95           | 3.33      | 4.07           | 2.08   | 2.56           |   | $1.25^{*}$ | $1.25^{*}$<br>$0.904^{*}$ |
|           | 40            | <br>V     | 0.25           | -<br>V | 0.34           | $\sim$    | 0.30           | $\sim$                | 0.36           | $\sim$    | 0.36           | -<br>V   | 0.28           | $\sim$    | 0.31           | -<br>V   | 0.34           | $\sim$    | 0.39           | $\sim$ 1 | 0.41           | $\sim$ 1  | 0.37           | -<br>V   | 0.48           | $\sim$    | 1.34           | 1.36   | 1.15           | 4.21      | 4.68           | 2.76   | 3.31           |   | 6.63       | 6.63<br>9.28              |
|           | 50            | <br>V     | 0.25           | -<br>V | 0.25           | <br>V     | 0.31           | $\stackrel{-1}{\lor}$ | 0.36           | $\sim$    | 0.47           | -<br>V   | 0.33           | -<br>V    | 0.31           | -<br>V   | 0.37           | -<br>V    | 0.41           | <br>     | 0.34           | -<br>V    | 0.50           | -<br>V   | 0.31           | <br>V     | 1.39           | 1.49   | 1.45           | 4.33      | 5.82           | 3.03   | 4.12           | _ | 7.13       | 7.13<br>9.89              |
|           | 100           | <br>      | 0.41           | <br>   | 0.33           | $\sim$ 1  | 0.28           | $\sim$ 1              | 0.31           | $\sim$ 1  | 0.38           | $\sim$ 1 | 0.33           | $\sim$ 1  | 0.34           | $\sim$ 1 | 0.44           | $\sim$ 1  | 0.48           | $\sim$ 1 | 0.42           | -1<br>-1  | 0.44           | $\sim$ 1 | 0.58           | 2.31      | 2.26           | 2.33   | 2.32           | 8.40      | 9.50           | 5.21   | 5.82           |   | 12.33      | 12.33<br>16.01            |
|           | 1000          | -1<br>-1  | 0.36           |        | 0.33           | $\sim$ 1  | 0.50           | 1.05                  | 0.48           | 1.20      | 0.67           | $\sim$   | 0.50           | $\sim$    | 0.45           | $\sim$   | 0.50           | 1.33      | 0.91           | 1.03     | 0.80           | 1.80      | 1.53           | 1.33     | 1.01           | 15.73     | 19.70          | 15.51  | 21.51          | 44.38     | 73.49          | 30.55  | 37.24          |   | 78.83      | 78.83<br>123.96           |
|           | 10000         | 1.43      | 0.75           | 1.60   | 0.83           | 3.18      | 1.76           | 2.46                  | 1.31           | 4.95      | 2.64           | 1.50     | 1.78           | 2.68      | 2.33           | 2.80     | 2.31           | 5.09      | 6.32           | 2.64     | 4.37           | 12.03     | 10.44          | 2.75     | 6.36           | 145.66    | 191.85         | 146.57 | 195.89         | 439.12    | 544.96         | 292.42 | 366.76         |   | 590.78     | 590.78<br>879.86          |
|           | Language      | SPSS      | $\mathbf{SAS}$ | SPSS   | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS                  | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS     | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS     | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS     | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS     | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS   | $\mathbf{SAS}$ | SPSS      | $\mathbf{SAS}$ | SPSS   | $\mathbf{SAS}$ |   | SPSS       | SPSS<br>SAS               |
|           | Conv. Crit.   | 0.0000001 |                | 0.001  |                | 0.0000001 |                | 0.0001                |                | 0.0000001 |                | 0.0001   |                | 0.0000001 |                | 0.0001   |                | 0.0000001 |                | 0.0001   |                | 0.0000001 |                | 0.0001   |                | 0.0000001 |                | 0.0001 |                | 0.0000001 |                | 0.001  |                |   | 0.00000001 | 0.0000001                 |
|           | No. Solutions | 0         |                |        |                | 1         |                |                       |                | 2         |                |          |                | 0         |                |          |                | 1         |                |          |                | 2         |                |          |                | 0         |                |        |                | 1         |                |        |                |   | 2          | 7                         |
|           | Sample Size   | 20        |                |        |                |           |                |                       |                |           |                |          |                | 100       |                |          |                |           |                |          |                |           |                |          |                | 1000      |                |        |                |           |                |        |                |   |            |                           |

Table 5.2: Run Time in Seconds for OGRS with Three Groups

|                      |   |        |           |                                                   |             | Iter     | ations      |          |          |             |             |             |
|----------------------|---|--------|-----------|---------------------------------------------------|-------------|----------|-------------|----------|----------|-------------|-------------|-------------|
| Conv. Crit. Language |   | 10000  | 1000      | 100                                               | 50          | 40       | 30          | 20       | 10       | 5           | 4           | з           |
| 0.0000001 SPSS       |   | 1.85   | < 1       | < 1                                               | $\sim$ 1    | $\sim$ 1 | $^{\prime}$ | $\sim$ 1 |          | $^{\prime}$ | \<br>1      | $^{\prime}$ |
| SAS                  |   | 0.97   | 0.41      | 0.34                                              | 0.61        | 0.48     | 0.48        | 0.75     | 0.5      | 0.39        | 0.31        | 0.37        |
| 0.0001 SPSS          |   | 1.71   | -1<br>V   | -i<br>V                                           | <br>V       | <br>     | -i<br>V     | -i<br>V  | -i<br>V  | <br>V       | -<br>V      | -1<br>-1    |
| SAS                  |   | 0.91   | 0.64      | 0.37                                              | 0.53        | 0.34     | 0.36        | 0.53     | 0.39     | 0.42        | 0.31        | 0.42        |
| 0.0000001 SPSS       |   | 3.18   | 1.18      | $\stackrel{\scriptstyle \wedge}{\scriptstyle -1}$ | $\sim$ 1    | $\sim$ 1 | $\sim$ 1    | -<br>V   | $\sim$ 1 | -1<br>V     | $\sim$ 1    | $\sim$ 1    |
| SAS                  |   | 1.95   | 0.59      | 0.36                                              | 0.47        | 0.56     | 0.31        | 0.39     | 0.36     | 0.33        | 0.59        | 0.36        |
| 0.0001 SPSS          |   | 1.85   | 1.03      | <br>V                                             | -<br>V      | -<br>V   | <br>V       | ч<br>V   | -<br>V   | <br>V       | -<br>V      | -1<br>V     |
| SAS                  |   | 1.45   | 0.47      | 0.34                                              | 0.48        | 0.37     | 0.36        | 0.36     | 0.37     | 0.39        | 0.48        | 0.44        |
| 0.0000001 SPSS       |   | 5.41   | 1.38      | $\stackrel{\scriptstyle \wedge}{\scriptstyle -1}$ | $\sim$ 1    | $\sim$ 1 | $\sim$ 1    | -1<br>-1 | $\sim$ 1 | -1<br>V     | $\sim$ 1    | $\sim$ 1    |
| SAS                  |   | 3.09   | 0.72      | 0.37                                              | 0.36        | 0.39     | 0.41        | 0.42     | 0.41     | 0.39        | 0.45        | 0.55        |
| 0.0001 SPSS          |   | 1.91   | 1.04      | $\sim$ 1                                          | V<br>V      | ~        | -1          | <br>V    | <br>V    | <br>V       | -<br>V      | -1<br>-1    |
| SAS                  |   | 1.47   | 0.5       | 0.38                                              | 0.53        | 0.3      | 0.42        | 0.5      | 0.36     | 0.39        | 0.39        | 0.36        |
| 0.00000001 SPSS      | _ | 3.48   | $\sim$ 1- | $\sim$ 1                                          | -<br>V      | <br>     | $\sim$      | -<br>V   | -<br>V   | -<br>V      | -<br>V      | -1<br>-1    |
| SAS                  |   | 2.87   | 0.66      | 0.44                                              | 0.42        | 0.51     | 0.37        | 0.39     | 0.47     | 0.36        | 0.44        | 0.36        |
| 0.0001 SPSS          |   | 3.18   | $\sim$ 1  | $\sim$ 1                                          | $\sim$ 1    | -1<br>-1 | -1          | -<br>V   | $\sim$ 1 | <br>        | $\sim$ 1    | -1<br>-1    |
| SAS                  |   | 2.86   | 0.8       | 0.39                                              | 0.45        | 0.59     | 0.62        | 1.08     | 0.58     | 1.31        | 0.66        | 2.08        |
| 0.0000001 SPSS       |   | 6.43   | 1.8       | 1.1                                               | -<br>V      | <br>     | $\sim$      | -<br>V   | -<br>V   | <br>        | -<br>V      | $\sim$ 1    |
| SAS                  |   | 7.55   | 1.43      | 0.42                                              | 0.44        | 0.59     | 0.41        | 0.41     | 0.47     | 0.39        | 0.39        | 0.39        |
| 0.0001 SPSS          | _ | 3.4    | 1.43      | 1.06                                              | $\sim$      | $\sim$   | -1<br>-1    | -<br>V   | $\sim$ 1 | <br>V       | ~           | $^{\prime}$ |
| SAS                  |   | 5.23   | 0.77      | 0.47                                              | 0.47        | 0.44     | 0.39        | 0.42     | 0.45     | 0.38        | 0.39        | 0.37        |
| 0.0000001 SPSS       |   | 10.55  | 2.34      | 1.16                                              | $\sim$ 1    | $\sim$   | $^{-1}$     | -1<br>V  | $\sim$ 1 | -1<br>V     | $\sim$ 1    | $^{\prime}$ |
| SAS                  |   | 12.28  | 1.7       | 0.51                                              | 0.62        | 0.39     | 0.41        | 0.56     | 0.31     | 0.36        | 0.45        | 0.45        |
| 0.0001 SPSS          |   | 3.54   | 1.76      | 1.03                                              | $^{\prime}$ | $\sim$ 1 | -1<br>-1    | -1<br>-1 | $\sim$ 1 | -1<br>V     | $^{\prime}$ | $\sim$ 1    |
| SAS                  |   | 7.71   | 1.33      | 0.55                                              | 0.42        | 0.45     | 0.44        | 0.45     | 0.59     | 0.36        | 0.44        | 0.52        |
| 0.0000001 SPSS       |   | 176.54 | 18.61     | 2.75                                              | 1.8         | 1.68     | 1.45        | 1.36     | 1.03     | -1<br>V     | $\sim$ 1    | -1<br>-1    |
| SAS                  |   | 207.72 | 21.36     | 2.51                                              | 1.37        | 1.2      | 0.94        | 0.87     | 0.58     | 0.48        | 0.55        | 0.48        |
| 0.0001 SPSS          |   | 185.25 | 19.31     | 3.33                                              | 1.91        | 1.7      | 1.71        | 1.3      | 1.16     | -1<br>V     | $^{\prime}$ | $\sim$ 1    |
| SAS                  |   | 208.57 | 21.62     | 2.54                                              | 1.44        | 1.2      | 1.01        | 0.81     | 0.55     | 0.45        | 0.64        | 0.48        |
| 0.00000001 SPSS      |   | 374.94 | 54.7      | 8.2                                               | 5.43        | 5.15     | 3.61        | 3.46     | 2.46     | 1.95        | 1.78        | 1.66        |
| SAS                  | _ | 622.46 | 62.51     | 10.66                                             | 6.47        | 5.37     | 4.62        | 3.15     | 2.15     | 1.61        | 1.48        | 1.33        |
| 0.0001 SPSS          | _ | 179.4  | 36.59     | 4.73                                              | 3.83        | 3.2      | 2.68        | 2.16     | 1.75     | 1.5         | 1.54        | 1.36        |
| SAS                  |   | 414.35 | 41.92     | 6.52                                              | 3.42        | 3.65     | 2.78        | 2.37     | 1.36     | 1.01        | 0.97        | Г           |
| 0.0000001 SPSS       |   | 533.09 | 93.26     | 14.96                                             | 8.61        | 7.93     | 7.08        | 5.08     | 3.66     | 2.68        | 2.53        | $1.35^{*}$  |
| SAS                  |   | 1103.5 | 154.77    | 20.05                                             | 11.2        | 10.03    | 8.03        | 6.27     | 4.29     | 2.65        | 2.29        | $0.53^{*}$  |
| 0.0001 SPSS          |   | 114.47 | 56.01     | 6.88                                              | 6.73        | 4.86     | 3.44        | 3.51     | 2.53     | 2.13        | 2.4         | $1.3^{*}$   |
| SAS                  |   | 661.84 | 66.58     | 11.39                                             | 7.93        | 6.4      | 4.81        | 3.65     | 2.25     | 1.51        | 1.44        | $0.67^{*}$  |

Run time in seconds from SPSS and SAS. Asterisks<sup>\*</sup> indicate runs which did not produce all Johnson-Neyman points.

Table 5.3: Run Time in Seconds for OGRS with Five Groups

Run time in seconds from SPSS and SAS. Asterisks<sup>\*</sup> indicate runs which did not produce all Johnson-Neyman points.

|          |               | <u> </u>  |      |        |      |           |      |        |                | *         | *    | *      | *    |           |      |        |      |           |      |        |      | *         | *     | *      | *    |           |        |        |        |           |        |        |        | *          |            |            | <br>*      |
|----------|---------------|-----------|------|--------|------|-----------|------|--------|----------------|-----------|------|--------|------|-----------|------|--------|------|-----------|------|--------|------|-----------|-------|--------|------|-----------|--------|--------|--------|-----------|--------|--------|--------|------------|------------|------------|------------|
|          | e<br>C        | 1.2       | 0.55 |        | 0.47 | 1.36      | 0.67 | 1.26   | 0.47           | 1.31      | 0.29 | 1.36   | 0.49 | 1.43      | 0.36 | 1.53   | 0.33 | 1.58      | 0.38 | 1.28   | 0.34 | 1.58      | 0.34  | 1.58   | 0.36 | 1.68      | 0.51   | 1.56   | 0.46   | 2.76      | 1.36   | 2.48   | 0.92   | 1.71       | $0.5^{*}$  | 2.2*       | 0.73       |
|          | 4             | 1.2       | 0.44 | -      | 0.31 | 1.3       | 0.36 | 1.23   | 0.33           | 1.31      | 0.35 | 1.35   | 0.41 | 1.43      | 0.44 | 1.38   | 0.35 | 1.56      | 0.47 | 1.55   | 0.63 | 1.59      | 0.39  | 1.61   | 0.47 | 1.86      | 0.74   | 2      | 0.61   | 3.08      | 1.5    | 2.46   | 0.96   | $2.3^{*}$  | $0.45^{*}$ | $2.18^{*}$ | $0.56^{*}$ |
|          | ы             | 1.35      | 0.34 | 1      | 0.34 | 1.23      | 0.41 | 1.21   | 0.37           | 1.21      | 0.31 | 1.39   | 0.4  | 1.38      | 0.34 | 1.38   | 0.32 | 1.46      | 0.39 | 1.25   | 0.33 | 1.59      | 0.36  | 1.61   | 0.32 | 1.45      | 0.54   | 1.93   | 0.49   | 3.16      | 1.63   | 2.78   | 1.09   | $1.63^{*}$ | $0.5^{*}$  | $2.24^{*}$ | $0.55^{*}$ |
|          | 10            | 1.06      | 0.52 | Ч      | 0.42 | 1.25      | 0.56 | 1.26   | 0.55           | 1.2       | 0.34 | 1.39   | 0.39 | 1.45      | 0.34 | 1.39   | 0.37 | 1.38      | 0.39 | 1.56   | 0.31 | 1.6       | 0.4   | 1.76   | 0.4  | 1.46      | 0.75   | 2.15   | 0.61   | 3.3       | 2.23   | 2.76   | 1.49   | 2.33*      | 0.67*      | $1.75^{*}$ | 0.78*      |
|          | 20            | 1.13      | 0.3  | 1.18   | 0.39 | 1.21      | 0.45 | 1.28   | 0.33           | 1.16      | 0.35 | 1.15   | 0.39 | 1.43      | 0.48 | 1.33   | 0.35 | 1.5       | 0.42 | 1.35   | 0.35 | 1.53      | 0.52  | 1.4    | 0.42 | 1.56      | 0.89   | 2.4    | -1     | 4.06      | 3.54   | 3.53   | 2.19   | $2.64^{*}$ | $0.83^{*}$ | $2.48^{*}$ | $0.89^{*}$ |
| erations | 30            | 1.25      | 0.36 | 1.2    | 0.37 | 1.36      | 0.39 | 1.31   | 0.34           | 1.26      | 0.49 | 1.36   | 0.4  | 1.36      | 0.35 | 1.41   | 0.34 | 1.7       | 0.44 | 1.3    | 0.36 | 1.7       | 0.43  | 1.68   | 0.41 | 2.66      | 1.11   | 2.55   | 1.05   | 6.06      | 4.98   | 4.3    | 3.16   | 2.66*      | $1.05^{*}$ | $2.78^{*}$ | $1.16^{*}$ |
| Ite      | 40            | 1.18      | 0.48 | 1.14   | 0.52 | 1.25      | 0.48 | 1.26   | 0.5            | 1.28      | 0.32 | 1.33   | 0.4  | 1.38      | 0.5  | 1.36   | 0.43 | 1.45      | 0.46 | 1.31   | 0.39 | 1.78      | 0.42  | 1.8    | 0.43 | 2.86      | 1.34   | 3.06   | 1.36   | 7.36      | 5.67   | 5.03   | 3.06   | 9.63       | 9.16       | 4.93       | 5.04       |
|          | 50            | 1.2       | 0.42 | 1.26   | 0.31 | 1.36      | 0.36 | 1.25   | 0.34           | 1.21      | 0.34 | 1.31   | 0.4  | 1.24      | 0.36 | 1.43   | 0.6  | 1.65      | 0.47 | 1.66   | 0.36 | 1.66      | 0.53  | 1.6    | 0.51 | 3.08      | 1.53   | 3.16   | 1.5    | 5.79      | 7.02   | 4.55   | 4.82   | 12.2       | 10.39      | 5.55       | 5.96       |
|          | 100           | 1.3       | 0.39 | 1.33   | 0.34 | 1.3       | 0.55 | 1.38   | 0.34           | 1.6       | 0.36 | 1.3    | 0.39 | 1.64      | 0.39 | 1.41   | 0.44 | 1.76      | 0.5  | 1.63   | 0.39 | 1.84      | 0.58  | 1.96   | 0.52 | 4.2       | 2.71   | 4.35   | 2.62   | 9.3       | 11.57  | 6.91   | 7.1    | 18.01      | 18.1       | 8.9        | 9.56       |
|          | 1000          | 1.33      | 0.53 | 1.43   | 0.59 | 1.56      | 0.69 | 1.51   | 0.67           | 1.83      | 0.73 | 1.56   | 0.57 | 1.7       | 0.64 | 1.78   | 0.66 | 2.56      | 1.45 | 3.25   | 0.88 | 3.31      | 2.11  | 2.56   | 1.28 | 26.73     | 22.99  | 26.48  | 22.85  | 51.21     | 67.74  | 26.91  | 45.41  | 116.56     | 112.24     | 48.31      | 67.61      |
|          | 10000         | 2.74      | 0.92 | 2.44   | 0.94 | 4.04      | 2.21 | 2.51   | 1.55           | 6.9       | 3.5  | 2.51   | 2.17 | 4.53      | 3.05 | 4.61   | 3.1  | 8.23      | 8.59 | 4.7    | 5.79 | 12.56     | 13.99 | 4.8    | 8.54 | 243.83    | 224.68 | 242.52 | 225.06 | 479.12    | 673.81 | 242.2  | 449.32 | 700.96     | 895.33     | 229.76     | 448.32     |
|          | Language      | SPSS      | SAS  | SPSS   | SAS  | SPSS      | SAS  | SPSS   | $\mathbf{SAS}$ | SPSS      | SAS  | SPSS   | SAS  | SPSS      | SAS  | SPSS   | SAS  | SPSS      | SAS  | SPSS   | SAS  | SPSS      | SAS   | SPSS   | SAS  | SPSS      | SAS    | SPSS   | SAS    | SPSS      | SAS    | SPSS   | SAS    | SPSS       | SAS        | SPSS       | SAS        |
|          | Conv. Crit.   | 0.0000001 |      | 0.0001 |      | 0.0000001 |      | 0.0001 |                | 0.0000001 |      | 0.0001 |      | 0.0000001 |      | 0.0001 |      | 0.0000001 |      | 0.0001 |      | 0.0000001 |       | 0.0001 |      | 0.0000001 |        | 0.0001 |        | 0.0000001 |        | 0.0001 |        | 0.0000001  |            | 0.0001     |            |
|          | No. Solutions | 0         |      |        |      | 1         |      |        |                | 2         |      |        |      | 0         |      |        |      | 1         |      |        |      | 2         |       |        |      | 0         |        |        |        | 1         |        |        |        | 2          |            |            |            |
|          | Sample Size   | 20        |      |        |      |           |      |        |                |           |      |        |      | 100       |      |        |      |           |      |        |      |           |       |        |      | 1000      |        |        |        |           |        |        |        |            |            |            |            |

Table 5.4: Run Time in Seconds for OGRS with Seven Groups

# Chapter 6: Party Differences in Support of Government Action to Mitigate Climate Change

Climate change has been an increasing topic of discussion throughout science and government. Particularly within psychology, it is important to understand who believes in climate change and who denies it. Through this example, we can investigate how political party identification and age are related to support of government action to mitigate climate change. In this study 815 U.S. citizens completed a survey online related to their opinions about global warming in the U.S. These participants were recruited such that they were approximately representative of the U.S. population.

The outcome I will examine in this dataset is a composite measure of how much respondents support actions of the U.S. government in response to climate issues. Each of the five questions related to a policy which would help the U.S. act in an attempt to mitigate climate change. Responses were measured on a scale of 1 (Strongly Opposed) to 7 (Strongly Support). An example item is "How much do you support or oppose increasing government investment for developing alternative energy like biofuels, wind or solar by 25%?" The scores on the five questions were averaged to give an overall score of support for government actions. Participants also reported some of their political information such as their party identification (Democrat, Republican, or Independent). Additionally, some demographic information was collected such as age and gender.

Previous studies found that Democrats typically believe more that climate change exists and more strongly support addressing climate change than Republicans (Hoffman, 2011; McCright & Dunlap, 2011; Nisbet & Myers, 2007; Schuldt, Roh, & Schwarz, 2015), with Independents falling somewhere between Republicans and Democrats depending on the outcome variable (Guber, 2013).

Some studies have found, however, that younger individuals are more concerned about climate change and project worse climate outcomes (Joslyn & LeClerc, 2016), and they are also less willing to take risks with energy usage (e.g., nuclear and coal; Greenberg & Truelove, 2011) as compared to older individuals. This leads to the research question: Does the effect of party identification on support for government action depend on age? Particularly, is there an age at which there is no significant difference in support of government actions by party? This first question can be answered by testing the interaction between party identification and age in predicting support for government action against climate change. The second question can be answered using the Johnson-Neyman technique for categorical independent variables. Statistical tests for both of these questions are provided in the output of a single run of OGRS. In these analyses I will treat party identification (Democrat, Republican, or Independent) as the independent variable, age as the moderator, and support for government action as the outcome variable.

If the data are stored in a dataset called global where party identification is stored as a categorical variable called partyid where Democrats are coded as 1, Independents are coded at 2, and Republicans are coded as 3, age (in years) of participant is stored as a continuous variable called **age**, and support for government action is stored as a continuous variable called **govact**, then the following OGRS commands analyze the data:

Figure 6.1 and Figure 6.2 provide the output generated from running the above SPSS and SAS code respectively. In the first section of the output there is information about the variables, and how **partyid** has been recoded. Variable **D1** is an indicator for Democrats, variable **D2** is an indicator for Independents, and Republicans are the reference group.

The second section of the output is the regression model. Based on this output, it is clear that the regression coefficients for D1 and D2 are not significant (b = -.44, p = .22 and b = -.2191, p = .5822 respectively). This means that there are no significant differences in support for government action between Democrats and Republicans when age is zero, and there are no significant differences between Independents and Republicans when age is zero. This is not a particularly informative finding, as the minimum age in the data was 17, and reaching conclusions about newborns with party identifications based on this data is clearly overreaching. When D1 and D2 are both zero (which is the code for Republicans) age significantly predicts support in government actions (b = -.0213, p = .0001). This means that among Republicans, a year increase in age results in an expected .0213 unit decrease in support for government action against climate change. The coefficient for D1M (b =

## Figure 6.1: OGRS Output for SPSS: Global Data

#### Written by Amanda Montoya

Documentation available by request

| *********               | **********                            | *********  | ********                              | •••••      | **********  | ******** |
|-------------------------|---------------------------------------|------------|---------------------------------------|------------|-------------|----------|
| Variables:              |                                       |            |                                       |            |             |          |
| X = partyid             |                                       |            |                                       |            |             |          |
| M = age                 |                                       |            |                                       |            |             |          |
| Y = govact              |                                       |            |                                       |            |             |          |
| Dummy Varia             | ble Coding So                         | theme:     |                                       |            |             |          |
| partvid                 | D1 D2                                 | 2          |                                       |            |             |          |
| 1                       | 1 (                                   |            |                                       |            |             |          |
| 2                       | 0 1                                   |            |                                       |            |             |          |
| 3                       | 0 0                                   | ,<br>,     |                                       |            |             |          |
| Sample size:<br>815     | ı                                     |            |                                       |            |             |          |
| Outcome: gos            | vact                                  | *****      | • • • • • • • • • • • • • • • • • • • | •••••      | *********   |          |
| ouccomer go             | lass                                  |            |                                       |            |             |          |
| Model Summa:            | ry                                    |            |                                       |            |             |          |
| .3926                   | .1542                                 | 29.4888    | 5.0000                                | 809.0000   | .0000       |          |
| Model                   |                                       |            |                                       |            |             |          |
|                         | coeff                                 | SE         | t                                     | p          | LLCI        | ULCI     |
| constant                | 5.0831                                | .2968      | 17.1274                               | .0000      | 4,5005      | 5,6656   |
| D1                      | 4366                                  | .3601      | -1.2124                               | .2257      | -1,1435     | .2703    |
| D2                      | -,2191                                | .3991      | 5488                                  | .5833      | -1,0025     | .5644    |
| 200                     | - 0213                                | 0053       | -4.0414                               | .0001      | - 0316      | 0109     |
| Tot1                    | 0299                                  | 0066       | 4 5269                                | 0000       | 0169        | 0420     |
| Int2                    | .0155                                 | .0076      | 2.0301                                | .0427      | .0005       | .0305    |
| INCE                    | .0100                                 | .0070      | 2.0001                                | .0121      |             | .0000    |
| Interactions            | 5:                                    |            |                                       |            |             |          |
| Int1 =                  | Dl                                    | x          | age                                   |            |             |          |
| Int2 =                  | D2                                    | x          | age                                   |            |             |          |
| P-smare in              | Transa dua to                         | interact   | ion (e) :                             |            |             |          |
| R2-chpg                 | P                                     | df1        | df2                                   |            |             |          |
| .0217                   | 10,3890                               | 2.0000     | 809.0000                              | .0000      |             |          |
|                         |                                       |            |                                       |            |             |          |
| **********              | • • • • • • • • • • • • • • • • • • • | + JOHNSON  | -NEYMAN TECH                          | NIQUE **** | **********  | ******** |
| Moderator va<br>29.3308 | alue(s) defir                         | ing Johnso | on-Neyman bo                          | undaries o | f significa | nce:     |
| Conditional             | effect of X                           | on Y at v  | alues of the                          | moderator  | (M)         |          |
| age                     | R2-chng                               | F          | P                                     |            |             |          |
| 17.0000                 | .0001                                 | .0402      | .9606                                 |            |             |          |
| 20.5000                 | .0006                                 | .2929      | .7462                                 |            |             |          |
| 24.0000                 | .0019                                 | .8994      | .4072                                 |            |             |          |
| 27.5000                 | .0043                                 | 2.0685     | .1270                                 |            |             |          |
| 29.3308                 | .0063                                 | 3.0069     | .0500                                 |            |             |          |
| 31.0000                 | .0086                                 | 4.1241     | .0165                                 |            |             |          |
| 34.5000                 | .0158                                 | 7.5483     | .0006                                 |            |             |          |
| 38.0000                 | .0272                                 | 12.9929    | .0000                                 |            |             |          |
| 41.5000                 | .0442                                 | 21.1581    | .0000                                 |            |             |          |
| 45.0000                 | .0677                                 | 32.3585    | .0000                                 |            |             |          |
| 48.5000                 | .0955                                 | 45.6815    | .0000                                 |            |             |          |
| 52.0000                 | .1220                                 | 58.3223    | .0000                                 |            |             |          |
| 55.5000                 | .1394                                 | 66.6664    | .0000                                 |            |             |          |
| 59.0000                 | .1444                                 | 69.0537    | .0000                                 |            |             |          |
| 62,5000                 | .1395                                 | 66.7175    | .0000                                 |            |             |          |
| 66.0000                 | .1296                                 | 61.9744    | .0000                                 |            |             |          |
| 69.5000                 | .1183                                 | 56.5838    | .0000                                 |            |             |          |
| 73.0000                 | .1076                                 | 51.4468    | .0000                                 |            |             |          |
| 76.5000                 | .0981                                 | 46.8969    | .0000                                 |            |             |          |
| 80.0000                 | .0899                                 | 42.9907    | .0000                                 |            |             |          |
| 83.5000                 | .0830                                 | 39.6755    | .0000                                 |            |             |          |
| 87,0000                 | .0771                                 | 36.8668    | .0000                                 |            |             |          |
|                         |                                       |            |                                       |            |             |          |

.....

|              |       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | itten by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | da K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |         |
|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|              |       | Docu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mentat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ilable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e by re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Varial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = G0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       | Dum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ny Var                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Codi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | heme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e.                                                                                                                                                                      |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RTYID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                       |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                       |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                       |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | me:<br>CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       | R R.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | del Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | imma<br>df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ary<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         | D       |
|              | 0.392 | 6 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                    | 000     |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
|              |       | coeff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LLCI                                                                                                                                                                    | ULCI    |
| Con          | stant | 5.0831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5005                                                                                                                                                                    | 5.6656  |
| D1           |       | -0.4366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 -1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1435                                                                                                                                                                    | 0.2703  |
| AGE          |       | -0.2191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 -4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 -1<br>01 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0316                                                                                                                                                                    | -0.0109 |
|              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |         |
| Int1         |       | 0.0299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0169                                                                                                                                                                    | 0.0429  |
| Int1<br>Int2 |       | 0.0299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 4.9<br>6 2.0<br>nterac<br>= D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 269<br>1301<br>tions<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000<br>0.043<br>c<br>AGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0169                                                                                                                                                                   | 0.0429  |
| Int1<br>Int2 |       | 0.0299<br>0.0155<br>R-Squar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.006<br>0.007<br>1<br>Int1<br>Int2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 4.9<br>6 2.0<br>nterac<br>= D1<br>= D2<br>ease d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269<br>1301<br>tions<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.04:<br>AGE<br>AGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 0<br>27 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0169<br>.0005                                                                                                                                                          | 0.0429  |
| Int1<br>Int2 | R     | 0.0299<br>0.0155<br>R-Squar<br>2-chng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 4.9<br>6 2.0<br>nterac<br>= D1<br>= D2<br>ease d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269<br>1301<br>tions<br>X<br>X<br>ue to<br>df1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.043<br>AGE<br>AGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 0<br>27 0<br>actio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0169<br>.0005<br>n(s):<br>P                                                                                                                                            | 0.0429  |
| Int1<br>Int2 | R     | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>10.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 4.5<br>6 2.0<br>= D1<br>= D2<br>ease d<br>F 0 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 269<br>301<br>tions<br>X<br>X<br>4f1<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>0.04:<br>AGE<br>AGE<br>inter<br>809.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | actio<br>df2<br>000 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0169<br>.0005<br>n(s):<br>P<br>0 0000                                                                                                                                   | 0.0429  |
| Int1<br>Int2 | R     | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.006<br>0.007<br>Int1<br>Int2<br>re incre<br>10.389<br>NSON-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 4.9<br>6 2.0<br>nterac<br>= D1<br>= D2<br>ease d<br>F 0<br>0 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269<br>1301<br>tions<br>X<br>X<br>X<br>X<br>4f1<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000<br>0.04:<br>C<br>AGE<br>AGE<br>0 inter<br>809.00<br>ECHN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | actio<br>df2<br>1000 (0<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0169<br>0005<br>n(s):<br>P<br>00000                                                                                                                                     | 0.0429  |
| Inti<br>Int2 | R     | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.006<br>0.007<br>Intl<br>Int1<br>Int2<br>e incre<br>10.389<br>NSON-<br>Mod<br>efining<br>oundar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 4.5<br>6 2.0<br>nterac<br>= D1<br>= D2<br>ease d<br>F 0<br>0 2.00<br>NEYM<br>derator<br>g John<br>ries of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iano in the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.042<br>c<br>AGE<br>AGE<br>b inter<br>809.00<br>ECHN<br>Neym<br>Rican                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00 0<br>27 0<br>402<br>412<br>412<br>412<br>412<br>412<br>412<br>412<br>412<br>412<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0169<br>0005<br>n(s):<br>P<br>0 0000                                                                                                                                    | 0.0429  |
| Inti<br>Int2 | R     | 0.0299<br>0.0155<br>R-Squar<br>2-chng<br>0.0217<br>JOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>10.389<br>NSON-<br>Mod<br>elefining<br>oundar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         4.5           6         2.0           Interact         0           0         2.00           NEYM         Verator           g John         jes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i301<br>tions<br>X<br>X<br>X<br>Uue to<br>df1<br>100<br>AN T<br>valu<br>sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.04:<br>AGE<br>AGE<br>809.00<br>ECHN<br>(s)<br>Neym<br>(s)<br>29.3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | actio<br>df2<br>000 (<br>lQUE<br>an<br>ce;<br>808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0169<br>0005<br>n(s):<br>P                                                                                                                                              | 0.0429  |
| Int          | R     | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217<br>JOH<br>d<br>b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>1<br>0.389<br>NSON-<br>Mod<br>Int1<br>10.389<br>NSON-<br>Mod<br>Int1<br>Int2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ease d<br>F<br>0 2.00<br>NEYM<br>derator<br>g John<br>riles of<br>X orderator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>iaces<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i | 0.000<br>0.04:<br>AGE<br>AGE<br>809.00<br>ECHN<br>we(s)<br>Neym<br>fican<br>29.3:<br>at va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | action<br>df2<br>000 (<br>lQUE<br>an<br>ce;<br>808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0169<br>0005<br>n(s):<br>P<br>0.0000                                                                                                                                    | 0.0429  |
| Int          | R     | 0.0299<br>0.0155<br>R.Square<br>2.chng<br>0.0217<br>JOH<br>d<br>b<br>b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>1<br>10.389<br>NSON-<br>Mod<br>iefining<br>oundar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | et of X store of the store of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ister for the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.04:<br>AGE<br>AGE<br>809.00<br>ECHN<br>ee(s)<br>Veym<br>ffican<br>29.3:<br>at va<br>1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | actio<br>df2<br>000 (<br>df2<br>000 (<br>lQUE<br>lues (<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0169<br>0005<br>n(s):<br>P<br>0.0000<br>0.0000<br>p                                                                                                                     | 0.0429  |
| Int          | R     | 0.0299<br>0.0155<br>R.Squar<br>2.chng<br>0.0217<br>JOH<br>d<br>b<br>b<br>ondition<br>AGE<br>17.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>10.389<br>NSON-<br>Mod<br>lefining<br>oundar<br>m<br>R2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6         4.5           6         2.0           Interact         D1           =         D1           =         D2           ease d         F           0         2.00           NEYM           Iderator           g John           rises of           ct of X           .chng           0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ises of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.04:<br>c<br>AGE<br>AGE<br>809.00<br>ECHN<br>809.00<br>ECHN<br>10<br>(0.04)<br>1<br>0.040:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | action<br>df2<br>1000 (<br>100E<br>an<br>ce;<br>808<br>lues<br>2<br>2<br>0<br>0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000                                                                                                                         | 0.0429  |
| Int<br>Int2  | R     | 0.0299<br>0.0155<br>R.Squar<br>2.chng<br>0.0217<br>JOH<br>d<br>b<br>molition:<br>AGE<br>17.0000<br>21.3750<br>25.7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>1<br>10.389<br>NSON-<br>Mod<br>effining<br>oundar<br>R22<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 4 5<br>6 2 0<br>nterac<br>= D11<br>= D2<br>ease d<br>F 0<br>0 2 00<br>NEYM<br>NEYM<br>lerator<br>g John<br>ries of<br>ct of X<br>codera<br>- chng<br>0.0001<br>1.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ions<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000<br>0.04:<br>c<br>AGE<br>AGE<br>809.00<br>ECHN<br>(e)(s)<br>Neym<br>fican<br>29.3:<br>0.040;<br>0.040;<br>1.396/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | actio<br>df2<br>000 0<br>lQUE<br>an<br>ce;<br>808<br>lues o<br>2 0<br>3 0<br>5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0169<br>0005<br>P<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0005           | 0.0429  |
| Int1<br>Int2 | R     | 0.0299<br>0.0155<br>R.Squata<br>2.chng<br>0.0217<br>JOH<br>d<br>b<br>b<br>17.0000<br>21.3750<br>25.7500<br>29.3308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>e incre<br>10.389<br>NSON-<br>Mod<br>feefining<br>oundari<br>R2<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anteract           anteract           anteract           anteract           anteract           anteract           b           action           b           ct of X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ions<br>tions<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.043<br>c<br>AGE<br>AGE<br>AGE<br>AGE<br>809.00<br>ECHN<br>ee(s)<br>Neym<br>ifican<br>29.33<br>at va<br>0.0403<br>0.0403<br>0.0403<br>1.3966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | actio<br>df2<br>000 (<br>df2<br>000 (<br>ce;<br>008<br>lues<br>ce;<br>2 (<br>0<br>0<br>0 (<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                                       | 0.0429  |
| Int1<br>Int2 | R     | 0.0299<br>0.0155<br>R.Squar<br>2.chng<br>0.0217<br>JOH<br>d<br>b<br>modition<br>21.3750<br>25.7500<br>29.3308<br>30.1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>10.389<br>NSON-<br>Mod<br>elefining<br>oundar<br>R2<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6         4.5           6         2.0           Interact         2.0           Interact         2.0           Image: Second Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ister and a second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.04:<br>c<br>AGE<br>AGE<br>b inter<br>809.00<br>ECHN<br>e(s)<br>Neym<br>1<br>0.040:<br>0.040:<br>0.040:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.0404:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.041:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.040:<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | action<br>df2 000 0<br>lQUE<br>lQUE<br>lQUE<br>lQUE<br>lQUE<br>lQUE<br>lQUE<br>lQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                             | 0.0429  |
| Int<br>Int2  | Co    | 0.0299<br>0.0155<br>R.Squar<br>2-chng<br>0.0217<br>JOH<br>d<br>b<br>0.0217<br>17.0000<br>21.3750<br>25.7500<br>29.3308<br>30.1250<br>33.1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>e incre<br>e incre<br>int1<br>10.389<br>NSON-<br>Mod<br>Int1<br>10.389<br>NSON-<br>Mod<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a         4.5           a         5.2           a         a           a         b           a         b           a         b           a         b           b         b           b         b           b         b           b         b           c         b           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c           c         c      c         c <td< td=""><td>ison<br/>AN T<br/>value<br/>tor (li</td><td>0.000<br/>0.042<br/>c<br/>AGE<br/>aAGE<br/>809.00<br/>ECHN<br/>809.00<br/>ECHN<br/>809.00<br/>ECHN<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>809.00<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>1</td><td>actio<br/>df2<br/>000 0<br/>df2<br/>000 0<br/>lQUE<br/>lues<br/>2 0<br/>3 0<br/>3 0<br/>3 0<br/>3 0</td><td>0169<br/>0005<br/>P<br/>00000<br/>00000<br/>00000<br/>00000<br/>00000<br/>00000<br/>0000</td><td>0.0429</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ison<br>AN T<br>value<br>tor (li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000<br>0.042<br>c<br>AGE<br>aAGE<br>809.00<br>ECHN<br>809.00<br>ECHN<br>809.00<br>ECHN<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>809.00<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | actio<br>df2<br>000 0<br>df2<br>000 0<br>lQUE<br>lues<br>2 0<br>3 0<br>3 0<br>3 0<br>3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0169<br>0005<br>P<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000                                                                                         | 0.0429  |
| Int<br>Int2  | R     | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217<br>JOH<br>d<br>b<br>ondition<br>21.3750<br>25.7500<br>29.3308<br>30.1250<br>38.8750<br>43.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>Int2<br>I                                                                                                                                                                                                                     | a         4.5           a         5.2           a         0.1           a         0.1           b         0.2           00         2.00           NEYM           derator           g         John           ct of X           coderation           0.0001           0.00029           0.00030           0.0073           0.00158           0.0029           0.0053           0.0053           0.0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 269<br>I301<br>Itions<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000<br>0.042<br>AGE<br>AGE<br>AGE<br>B09.00<br>ECHN<br>Re(s)<br>Neym<br>fican<br>29.33<br>at vas<br>10.0402<br>0.0402<br>0.04040<br>1.3966<br>3.5033<br>7.548<br>4.755<br>6.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | actio<br>df2<br>000 0<br>df2<br>000 0<br>lQUE<br>an<br>ce;<br>808<br>2 0<br>3 0<br>5 0<br>3 0<br>3 0<br>1 0<br>4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0005<br>0 0000<br>0 0000<br>0 0000                                                                                 | 0.0429  |
| Int<br>Int2  | Ce    | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>0.007<br>1<br>Int1<br>Int2<br>0<br>10.389<br>NSON-<br>10.389<br>NSON-<br>10.389<br>NSON-<br>10.389<br>0<br>UNCOL<br>10.389<br>0<br>UNCOL<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>10.007<br>1 | 6         4         4           6         4         4         4           nterac         nterac         1         1           1         1         1         1         1           1         1         1         1         1         1           1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""><td>In the second se</td><td>0.000<br/>0.042<br/>AGE<br/>AGE<br/>8009.00<br/>ECHN<br/>29.33<br/>at va<br/>0.0402<br/>1.3960<br/>0.4040<br/>1.3960<br/>3.5030<br/>7.548<br/>4.755<br/>6.395-<br/>2.273</td><td>actio<br/>df2<br/>f000 0<br/>f000 0<br/>f000<br/>f000 0<br/>f000 0<br/>f0000 0<br/>f000 0<br/>f000 0<br/>f000 0<br/>f00000000</td><td>0169<br/>0005<br/>P<br/>0 0000<br/>0 0000<br/>0 0000<br/>0 0000<br/>0 0000<br/>0 0000<br/>0 0000<br/>0 0000</td><td>0.0429</td></td<> | In the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.042<br>AGE<br>AGE<br>8009.00<br>ECHN<br>29.33<br>at va<br>0.0402<br>1.3960<br>0.4040<br>1.3960<br>3.5030<br>7.548<br>4.755<br>6.395-<br>2.273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | actio<br>df2<br>f000 0<br>f000 0<br>f000<br>f000 0<br>f000 0<br>f0000 0<br>f000 0<br>f000 0<br>f000 0<br>f00000000 | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                                       | 0.0429  |
| Int<br>Int2  | Ca    | 0.0299<br>0.0155<br>R.Square<br>2.chng<br>0.0217<br>d<br>d<br>d<br>b<br>ondition:<br>AGE<br>17.0000<br>25.7500<br>25.7500<br>29.3308<br>30.1250<br>38.8750<br>38.8750<br>43.45000<br>47.6250<br>52.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006<br>0.007<br>1<br>Int1<br>Int2<br>1<br>10.389<br>NSON-<br>Mod<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a         4         4         4         4         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         2         6         1         1         6         6         2         6         1         2         6         1         1         2         0         7         6         7         7         6         7         7         6         7         7         6         7         7         6         7         7         6         7         7         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1301<br>tions<br>X X<br>X<br>X<br>X<br>X<br>X<br>X<br>AN T<br>Value to<br>df1<br>000<br>AN T<br>Value<br>sign<br>1<br>000<br>1<br>1<br>1<br>2<br>2<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.042<br>AGE<br>AGE<br>Inter<br>809.00<br>ECHN<br>10(5)<br>Noym<br>100.0402<br>0.0402<br>0.0402<br>1.3960<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3.503<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                | actio<br>df2<br>000 0<br>df2<br>000 0<br>df2<br>0<br>df2<br>0<br>df2<br>000 0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>0<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                                                 | 0.0429  |
| Inti<br>Int2 | Co    | 0.0299<br>0.0155<br>R.Squar<br>2.chng<br>0.0217<br>d<br>d<br>d<br>b<br>ondition<br>17,0000<br>25,7500<br>29,3308<br>30,1250<br>29,3308<br>30,1250<br>38,8750<br>38,8750<br>44,25200<br>47,6250<br>52,0000<br>55,3750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.006<br>0.007<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a         4         4         4         4         4         4         4         4         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         2         6         1         1         6         6         2         6         1         1         2         0         6         6         7         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 269<br>301<br>tions<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000<br>0.042<br>AGE<br>AGE<br>aGE<br>binter<br>809.00<br>ECHN<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0402<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | actio<br>df2<br>000 0<br>df2<br>000 0<br>c<br>lQUE<br>1<br>000 0<br>c<br>lQUE<br>1<br>2 0<br>3 0<br>5 0<br>3 0<br>5 0<br>3 0<br>5 0<br>3 0<br>5 0<br>0<br>3 0<br>0<br>5 0<br>0<br>3 0<br>0<br>5 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                                                 | 0.0429  |
| Inti<br>Int2 | Co    | 0.0299<br>0.0155<br>R-Squar<br>2.chng<br>0.0217<br>0.0217<br>JOH<br>d<br>b<br>0.0217<br>JOH<br>d<br>b<br>0.0217<br>3.0155<br>JOH<br>d<br>b<br>0.0217<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.0155<br>3.01555<br>3.01555<br>3.01555<br>3.015555<br>3.01555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                   | 0.006<br>0.007<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a         4         4         4         5           a         b         4         5         2         0           a         b         c         c         0         1         2         0         1         2         0         2         0         2         0         2         0         2         0         2         0         2         0         1         2         0         1         2         0         1         1         0         0         1         1         0         0         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 269<br>301<br>tions<br>X X<br>X<br>X<br>x<br>ue to<br>diff<br>100<br>4N T<br>valu<br>son -1<br>signi<br>1<br>2<br>4<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>0.04:<br>AGE<br>AGE<br>Inter<br>809.00<br>ECHN<br>0.040:<br>0.040:<br>0.040:<br>1.396:<br>3.006:<br>3.503:<br>7.548:<br>4.755<br>6.395:<br>2.2733<br>8.322:<br>7.8144<br>8.330:<br>3.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | action<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2<br>df2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0169<br>0005<br>n(s):<br>P<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                              | 0.0429  |
| Inti<br>Int2 | Co    | 0.0299<br>0.0155<br><b>R.Squar</b><br><b>2.chng</b><br>0.0217<br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b> | 0.006<br>0.007<br>1<br>1111<br>1112<br>110389<br>NSON-<br>Mode<br>10389<br>NSON-<br>Mode<br>10389<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c         4.9           d         4.9           d         2.0           meterac         D1           e         D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 269<br>301<br>tions<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>AN T<br>400<br>411<br>500<br>1<br>2<br>4<br>5<br>6<br>6<br>6<br>6<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000<br>0.04:<br>c<br>AGE<br>a AGE<br>b inter<br>809.00<br>ECHN<br>29.3:<br>at va<br>809.00<br>ECHN<br>29.3:<br>at va<br>10.040;<br>0.4040;<br>0.4040;<br>0.4040;<br>1.3966;<br>3.5033<br>7.548;<br>4.7555;<br>6.3953;<br>2.2733<br>8.3212;<br>8.3300<br>3.2733;<br>6.5833;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | actio<br>df2<br>000 0<br>df2<br>000 0<br>c<br>ce;<br>008<br>lues<br>2 0<br>3 0<br>5 0<br>6<br>3 0<br>5 0<br>7 0<br>3 0<br>5 0<br>7 0<br>3 0<br>7 0<br>8 0<br>7 0<br>0<br>8 0<br>7 0<br>0<br>9 0<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0169<br>0005<br>P<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 0000                                                   | 0.0429  |
| Inti<br>Int2 | Co    | 0.0299<br>0.0155<br>0.0155<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.                                                                                                                                                                                           | 0.006<br>0.007<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         4.5           6         4.5           6         2.0           Interact         D1           =         D2           cases d         D2           NEYM         P           0         2.00           NEYM         P           0         2.00           0         2.00           0.0001         0.0008           0.0003         0.0073           0.0058         0.0058           0.0058         0.0054           0.1429         0.1429           0.1423         1.1183           0.1051         1.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 269<br>301<br>tions<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>0.042<br>AGE<br>AGE<br>a AGE<br>b inter<br>809.00<br>ECHN<br>e(s)<br>Neym<br>fifcan<br>29.3<br>at va<br>at va<br>3.006<br>3.503<br>7.548<br>4.755<br>2.273<br>8.322<br>7.8144<br>8.330<br>3.273<br>6.583<br>0.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | action           action           dd2           action           actio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0169<br>0005<br>n(s):<br>P<br>0 0000<br>0 0000                      | 0.0429  |
| Inti<br>Int2 | Ce    | 0.0299<br>0.0155<br>0.0155<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.0217<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.                                                                                                                                                                                              | 0.006<br>0.007<br>1.<br>Int1<br>Int2<br>e incr<br>1.<br>Int1<br>Int2<br>NSON-<br>Mod<br>efining<br>oundat<br>R22<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6         4.9           6         4.9           6         2.0           Interact         =           0         2.00           NEYM         Prato           0         2.00           NEYM         Prato           0         2.00           0         2.00           0.0001         0.0008           0.0003         0.0073           0.0052         0.00582           0.0052         0.00884           0.1429         1.1429           0.14210         1.0123           0.1183         0.1051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 269<br>301<br>tions<br>X X<br>x x<br>ue to<br>dff<br>100<br>100<br>11<br>22<br>4<br>5<br>6<br>6<br>6<br>6<br>5<br>5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>0.042<br>AGE<br>AGE<br>AGE<br>AGE<br>C<br>AGE<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE<br>C<br>AGE | action           action           dd2           dd2           dd2           cc;           b00           cc;           b00           cc;           b00           cc;           cc;           cc;           cc;           cc;           c;           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0169<br>0005<br>P<br>0 0000<br>0 0000 | 0.0429  |

Figure 6.2: OGRS Output for SAS: Global Data

Figure 6.3: Graph of Predicted Support for Government Action across Party Identification and Age



.03, p < .001), means that the difference between Republicans and Democrats in support for government action against climate change is expected to change as age changes. Specifically, as age increases by one year the difference between Democrats and Republicans is estimated to increase by .03 units, where democrats are estimated to be more supportive of government action relative to Republicans as age increases. This can be seen clearly in Figure 6.3, as age increases support for government action increases among Democrats, and decreases among Republicans.

Similarly, the coefficient for D2M (b = .0155, p = .0427), means that the difference between Republicans and Independents in support for government action against climate change is also estimated to increase as age increases. As age increases by one year, the difference between Independents and Republicans is estimated to increase by .02 units, where independents are estimated to be more supportive of government action relative to Republicans as age increases. Based on Figure 2 it seems that Independents support decreases slightly as age increases, but the decrease for Republicans is stronger, and the gap between Independents and Republicans increases as age increases.

Based on the regression coefficients, it seems that there is a clear interaction between party identification and age in predicting support of government actions. However, there are many instances where one product coefficient is significant and the other is not, or both are marginally significant. In these cases, and in all cases, it is best to examine a formal test of whether allowing the relationship between the independent variable and the outcome to depend on the moderator increases the explained variance in the outcome variable. This test is provided at the bottom of the second section of the OGRS output labeled "R-square increase due to interaction(s)". This is the test comparing the model without either of the product coefficients, and thus fixing the effect of political identification on support of government action to be constant across age, to the model which allows this effect to vary across age. Based on the output allowing this relationship to vary across age explains an estimated additional 2% of the variance in support in government actions (F(2, 809) = 10.39), p < .001). This provides clear support for the hypothesis that the effect of political party on support for government action to mitigate climate change depends on age of respondents.

Based on this finding it would be reasonable to wonder "At what point does political party matter?" Alternatively, at what ages are there significant differences between political parties on support for government action against climate change? This is a question which can be answered by using the Johnson-Neyman procedure for categorical independent variables. In the third section of the **OGRS** output labeled Johnson-Neyman Technique, there is output from the iterative program described in the previous chapter. The age at which the differences between political parties transitions from being significant to non-significant is 29.33 years. Based on the table below the Johnson-Neyman solutions, individuals below the age of 29.33 show no significant party divides on support for government action, but for individuals above the age of 29.33, party identification has a significant effect on support for government action against climate change. By defining regions of significance and regions of nonsignificance, the Johnson-Neyman procedure eliminates the need to probe at a variety of arbitrary points along the moderator. Instead based on these regions we know if the effect of party identification is significant for any point based on which of these regions it is contained in.

### Chapter 7: Discussion

An approximate method for finding Johnson-Neyman boundaries of significance in an omnibus test of group difference should provide opportunities for researchers to answer new questions. Particularly in psychology, researchers often care about categorical variables such as ethnicity, and it is important that researchers have the ability to estimate moderation effects and probe them using the most sophisticated methods available. I began this thesis by explaining common methods of estimating and probing interaction effects in linear regression. I overviewed the history of the development of the Johnson-Neyman procedure, in order to show how the procedure has grown from use just in an ANCOVA to any linear regression. Using the principles of the Johnson-Neyman procedure in linear regression and the general linear model, I derived the boundaries of significance for a three category variable. Using the same method, I showed why the closed form derivation of the Johnson-Neyman boundaries of significance is not possible for more than four groups. I developed an iterative tool which can approximate these boundaries. I have shown that the tool achives very close solutions when the solutions are known and runs in a reasonable amount of time. I then showed how the tool is used and how the output is interpreted with a real data example about party differences in support for government action against global warming.

#### 7.1 Uses and Non-Uses

My hope is that this tool will help researchers answer questions that they previously could not answer. There are many instances where other types of analyses are more appropriate for a question, and my aim is not for people to use this method in lieu of other more appropriate methods, but rather to use this method when it is most relevant to the question at hand. Many researchers with categorical variables are most interested in pairwise comparisons For example, when a researcher runs an experiment with two control conditions and an experimental condition, this may be an instance where the researcher is not particularly interested in omnibus group differences, and in this case the researcher could use the Johnson-Neyman procedures developed for pairwise comparisons. However, there are many instances where omnibus group differences are most relevant to a researcher's question of interest, and in that case I recommend using this tool over others where only the results for pairwise comparisons are available.

### 7.2 Future Directions

There are many extensions of this Johnson-Neyman approximation which may be of use to researchers. For example, allowing for multiple moderators may help researchers identify more complex regions of significance which are of higher dimension. With one moderator, there is only one dimension which needs to be searched, but with j moderators, there would be a j dimensional surface which would need to be searched for Johnson-Neyman transition points. In this situation the boundary of significance is a function, rather than a few points. This problem is complicated in two ways. First, developing a search algorithm to thoroughly search multidimensional spaces is more difficult than the current one dimensional problem dealt with in this thesis. Second, there will be infinite transition points, and thus the goal might be to define a function which describes this transition point. The form of such a function is known in the continuous and dichotomous independent variable case (Abelson, 1953), but in the categorical independent variable case it is currently unknown.

Moderation can take many forms. Throughout this thesis I have dealt solely with linear moderation, where the effect of X on Y is a linear function of M. Other forms of moderation, like higher level polynomial functions, would require defining a different contrast matrix L. If the corresponding contrast matrix results in Fbeing a polynomial function of M of any order, then the methods here could be applied to other types of moderation. However, not all contrast matrices will result in a polynomial function of M, and so the method proposed in this thesis is not generalizable to all types of moderation, but could potentially be generalized to other certain kinds of moderation.

Hayes and Matthes (2009) generalized the Johnson-Neyman procedure to linear regression with a dichotomous outcome. In principle, this could be done with the current method as well. Because logistic regression requires a maximum likelihood algorithm to estimate the coefficients and significance tests, and the Johnson-Neyman approximation proposed in this thesis requires iterative estimation of these models, program run time could become unreasonably long. A more efficient search algorithm could be used in combination with logistic regression to generalize this procedure to dichotomous outcomes.

Researchers are often interested in where along the range of a moderator the independent variable no longer has an effect (e.g., Voorhees, Baker, Bourdeau, Brocato,

& Cronin Jr., 2009), for whom some intervention would be effective (e.g., Oyserman, Brickman, & Rhodes, 2007), or who that may be particularly at risk for some outcome (e.g., Hilmer et al., 2008). One major misconception of the Johnson-Neyman procedure is that the boundaries of significance are good estimates of these points. Some researchers even make recommendations for treatments and decisions based on the findings of the Johnson-Neyman procedure. Other researchers have even compared transition points from one study to another, suggesting that the results are contradictory because the transition points were different (Carlson & Iacono, 2008). Because the boundaries of significance identify where an effect is statistically significant, they will be very dependent on study elements like sample size and effect size or strength of manipulation. Certain researchers may benefit from having an estimate of the point where an effect is zero, or the smallest it gets. These would not necessarily be the Johnson-Neyman boundaries of significance. The boundaries of significance will approach the point(s) along the moderator where the independent variable no longer has an effect as sample size increases. However, at any sample size, there is a better estimate of this point, which is the sample estimate of where the effect is zero. When there are two groups, a good estimate of when an effect is zero is the estimate of where the two groups have the same expected value on the outcome. For example, if X is a dichotomous variable coded 0 and 1, and the regression model is:

$$E(Y_i) = b_0 + b_1 X_i + b_2 M_i + b_3 X_i M_i.$$

Then the expected value of Y when X is 0 is

$$E(Y_i | X = 0) = b_0 + b_2 M_i,$$

and the expected value of Y when X is 1 is

$$E(Y_i|X=0) = b_0 + b_1 + b_2M_i + b_3M_i$$

By setting these two equations equal to each other, and solving for M, this gives an estimate of M such that the effect of X is zero.

$$b_0 + b_2 M_i = b_0 + b_1 + b_2 M_i + b_3 M_i$$
$$0 = b_1 + b_3 M_i$$
$$b_1 / b_3 = M$$

This would be a better estimate of the point where the effect of X on Y is zero. The sampling distribution of this point likely has an unusual shape, as the distribution of the quotient of two normally distributed variables is not neccessarily normal. Methods such as bootstrapping could be used to provide a confidence interval for this point. Generalizing this method to categorical independent variables could be more complex, as there may be no point along the moderator where the effect of X is estimated to be zero. In this case, it could be worthwhile to estimate the point where the effect of the independent variable on the outcome is smallest instead. Some investigation into this estimate and elaboration on how the Johnson-Neyman points are sample-size dependent and are not a good estimate of when an independent variable has no effect could be useful in ensuring appropriate use of the Johnson-Neyman procedure.

#### 7.3 Conclusion

The Johnson-Neyman procedure has been continuously generalized to more and more situations since it's development. I believe this is because it is a useful statistical tool that helps researchers better understand and visualize interactions, which can often be very complicated. My original goal in this thesis was to provide an analytical solution to the Johnson-Neyman boundaries of significance with a categorical independent variable with any number of groups. Through my investigation of this topic I discovered that a true analytical solution would not be possible; however, I developed an iterative computer program which provides good approximations to the Johnson-Neyman boundaries under the conditions tested in this thesis, and I believe this tool could be helpful to researchers investigating questions of moderation of the effect of a categorical independent variable on some outcome.

### References

- Abamowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Washington D. C.: Dover Publications.
- Abel, N. H. (1824). Mémoire sur les équations algébriques: ou on démontre l'impossibilité de la résolution de l'équation générale du cinquiéme dégré. Groendahl: Christiana.
- Abelson, R. P. (1953). A note on the Neyman-Johnson technique. *Psychometrika*, 18(3), 213–218.
- Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.
- Barajas-Gonzales, R. G., & Brooks-Gunn, J. (2014). Income, neighborhood stressors, and harsh parenting: Test of moderation by ethnicity, age, and gender. *Journal* of Family Psychology, 28(6), 855–866.
- Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. *Multivariate Behavioral Re*search, 40(3), 373–400.
- Bratley, P., Fox, B. L., & Schrage, L. E. (1983). A guide to simulation. New York: Springer-Verlag.
- Campbell, N. J. (1990). High school students computer attitudes and attributions: Gender and ethnic group differences. Journal of Adolescent Research, 5(4), 485–499.
- Carlson, S. R., & Iacono, W. G. (2008). Deviant P300 amplitude development in males is associated with paternal exteralizing psychopathology. *Journal of Abnormal Psychology*, 117(4), 910–923.
- Carroll, J. B., & Wilson, G. F. (1970). An interactive-computer program for the Johnson-Neyman technique in the case of two-groups, two predictor variables, and one criterion variable. *Educational and Psychological Measurement*, 30, 121–132.
- Cleveland, M. J., Hultgren, B., Varvil-Weld, L., Mallett, K. A., Turrisi, R., & Abar, C. C. (2013). Moderation of a parent-based intervention on transitions in drinking: Examining the role of normative perceptions and attitudes among highand low-risk first-year college students. *Alcoholism: Clinical and Experimental Research*, 37(9), 1587–1594.

- Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
- D'Alonzo, K. T. (2004). The Johnson-Neyman procedure as an alternative to AN-COVA. Western Journal of Nursing Research, 26(7), 804–812.
- Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, applications, and implementation. New York, New York: The Guilford Press.
- DeRemer, M. (1989). The computer gender gap in elementary school. Computers in the Schools, 6(3–4), 39–50.
- Engqvist, L. (2005). The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. *Animal Behavior*, 70, 967–971.
- Field, A. (2013). Discovering Statistics using IBM SPSS Statistics (4th ed.). Thousand Oaks, CA: Sage.
- Forster, F. (1971). The generalized Johnson-Neyman procedures: An approach to covariate adjustment and interaction analysis. Paper presented at the Annual Meeting of the American Educational Research Association, New York, NY.
- Forster, F. (1974). An alternative to ANCOVA when group regressions are heterogenous: The generalized Johnson-Neyman procedure. Paper presented at the Annual Meeting of the American Educational Research Association, Washington, D. C.
- Greenberg, M., & Truelove, M. B. (2011). Energy choices and risk beliefs: Is it just global warming and a fear of a nuclear power plant accident? *Risk Analysis*, 31(5), 819–831.
- Guber, D. L. (2013). A cooling climate for change? Party polarization and the politics of global warming. American Behavioral Scientist, 57(1), 93–115.
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis. New York, NY: Guilford Press.
- Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. *Behavior Research Methods*, 41(3), 924–936.
- Hilmer, C. J., Schetter, C. D., Dominguez, T. P., Abdou, C., Hobel, C. J., Glynn, L., & Sandman, C. (2008). Stress and blood pressure during pregnancy: Racial differences and associations with birthweight. *Psychosomatic Medicine*, 70, 57–64.
- Hoffman, L. (2011). Talking past each other? Cultural framing of skeptical and convinced logics in the climate change debate. Organization & Environment, 24(1), 3–33.
- Howell, D. C. (2007). *Statistical methods for psychology*. Belmont, CA: Thomson Wadsworth.
- Huitema, B. E. (1980). The analysis of covariance and alternatives. New York, NY: John Wiley.

- Hunka, S. (1995). Identifying region of significance in ANCOVA problems having non-homogenous regressions. British Journal of Mathematical and Statistical Psychology, 48, 161–188.
- Hunka, S., & Leighton, J. (1997). Defining Jjohnson-Neyman regions of signifiance in the three-covariate ANCOVA using Mathematica. Journal of Educational and Behavioral Statistics, 22(4), 361–387.
- Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (2nd ed.). Thousand Oaks, CA: Sage.
- Johnson, P. O., & Fay, L. F. (1950). The Johnson-Neyman technique, its theory and application. *Psychometrika*, 15(4), 349–367.
- Johnson, P. O., & Hoyt, C. (1947). On determining three dimensional regions of significance. Journal of Experimental Education, 15, 203–212.
- Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. *Statistical Research Memoirs*, 1, 57–93.
- Joslyn, S. L., & LeClerc, J. E. (2016). Climate projections and uncertainty communication. Topics in Cognitive Science, 8, 222–241.
- Karpman, M. B. (1983). The Johnson-Neyman technique using SPSS or BMDP. Educational and Psychological Measurement, 43, 137–147.
- Karpman, M. B. (1986). Comparing two non-parallel regression lines with the parametric alternative to analysis of covariance using SPSS-X or SAS – The Johnson-Neyman Technique. Educational and Psychological Measurement, 46, 639–644.
- Kim, Y., & Baek, Y. M. (2014). When is selective self-presentation effective? An investigation of the moderation effect of "self-esteem" and "social trust". Cyberpsychology, Behavior, and Social Networking, 17(11), 697–701.
- McCright, A. M., & Dunlap, R. E. (2011). The politicization of climate change and polization in the American public's view of global warming, 2001–2010. *Sociological Quarterly*, 52(2), 155–194.
- Niederdeppe, J., Shapiro, M. A., Kim, H. K., Bartolo, D., & Porticella, N. (2014). Narrative persuasion, causality, complex integration, and support for obesity policy. *Health Communications*, 29, 431–444.
- Nisbet, M. C., & Myers, T. (2007). The polls-trend: Twenty years of public opinion about global warming. *Public Opinion Quarterly*, 71(3), 444–470.
- O'Connor, B. P. (1998). SIMPLE: All-in-one programs for exploring interactions in moderated multiple regression. *Educational and Psychological Measurement*, 58(5), 836–840.
- O'Malley, M., Voight, A., Renshaw, T. L., & Eklund, K. (2015). School climate, family structure, and academic achievement: A study of moderation effects. *School Psychology Quarterly*, 30(1), 142–157.
- Oyserman, D., Brickman, D., & Rhodes, M. (2007). School success, possible selves, and parent school involvement. *Family Relations*, 56, 479–489.
- Pedhazur, E. J. (1997). Multiple regression in behavioral research (3rd ed.). Orlando, FL: Harcourt Brace.

- Potthoff, R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. *Psychometrika*, 29(3), 241–256.
- Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. *Journal of Educational & Behavioral Statistics*, 31(3), 437–488.
- Roots [Computer program manual]. (n.d.). Wolfram Lanugage & System Documentation Center. Retrieved January 2016, from https://reference.wolfram.com/ language/ref/Roots.html
- Ruffini, P. (1799). Teoria general delle equazioni, in cui si dimonstra impossibile la soluzione albegraica delle equazioni generali de grado superior al quarto. Bologna, Italy: Nella stamperia di S. T. d'Aquino.
- Schuldt, J. P., Roh, S., & Schwarz, N. (2015). Questionnaire design effects in climate change surveys: Implications for the partian divide. The Annals of the American Academy of Political and Social Science, 658, 67–85.
- Siy, J. O., & Cheryan, S. (2013). When compliments fail to flatter: American individualism and responses to positive stereotypes. Johnson of Personality and Social Psychology, 104(1), 87–102.
- Spiller, S. A., Fitzimons, G. J., Lynch Jr., J. G., & McClelland, G. H. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. *Journal of Marketing Research*, 50, 277–288.
- Voorhees, C. M., Baker, J., Bourdeau, B. L., Brocato, E. D., & Cronin Jr., J. J. (2009). It depends: Moderating the relationships among perceived waiting time, anger, and regret. *Journal of Service Research*, 12(2), 138–155.
- Whitley Jr., B. E. (1997). Gender differences in computer-related attitudes and behavior: A meta-analysis. *Computers in Human Behavior*, 13(1), 1–22.

### Appendix A: OGRS Macro for SPSS

The following is the macro code for OGRS in SPSS. This code, unaltered, typed into a syntax window and run in SPSS will define OGRS such that it can be used as described in this manuscript.

```
/*OGRS for SPSS Version 1.1*/.
/* Copyright 2016 */.
/* by Amanda Kay Montoya */.
/* Documentation available by email to montoya.29@osu.edu */.
preserve.
set printback=off.
define CDFINVT (p = !charend('/') /df = !charend('/')).
compute p0=-.322232431088.
compute p1 = -1.
compute p2 = -.342242088547.
compute p3 = -.0204231210245.
compute p4 = -.0000453642210148.
compute q0 = .0993484626060.
compute q1 = .588581570495.
compute q2 = .531103462366.
compute q3 = .103537752850.
compute q4 = .0038560700634.
compute ppv = !p.
do if (!p > .5).
compute ppv = 1 - !p.
end if.
compute y5=sqrt(-2*ln(ppv)).
compute xp=y5+((((y5*p4+p3)*y5+p2)*y5+p1)*y5+p0)/((((y5*q4+q3)*y5+q2)*y5+q1)
*y5+q0).
do if (!p <= .5).
```

```
compute xp = -xp.
end if.
compute toutput = sqrt(!df*(exp((!df-(5/6))*(xp**2)/(!df-(2/3)+.1/!df)**2)
-1)).
!enddefine.
define CORR (var1 = !charend('/') /var2 = !charend('/')).
COMPUTE var1 = !var1.
COMPUTE var2 = !var2.
COMPUTE MeanV1 = csum(var1)/nrow(var1).
COMPUTE MeanV2 = csum(var2)/nrow(var2).
COMPUTE Var1Cent = var1 - MeanV1.
COMPUTE Var2Cent = var2 - MeanV2.
COMPUTE crosprod = csum(Var1Cent &* Var2Cent).
COMPUTE Var1SS = csum(Var1Cent &* Var1Cent).
COMPUTE Var2SS = csum(Var2Cent &* Var2Cent).
COMPUTE rPears = crosprod / (sqrt(var1SS)*sqrt(var2SS)).
!enddefine.
define RedR (center = !charend('/')).
COMPUTE mcent = m - !center.
COMPUTE m2int = MAKE(N, numgroup-1, -999).
LOOP i4 = 1 to (numgroup-1).
COMPUTE m2int(:,i4) = mcent&*data(:,i4+1).
END LOOP.
COMPUTE datam2 = {MAKE(N,1,1), mcent, m2int}.
DO IF covtog = 1.
COMPUTE datam2 = {datam2, data(:,(2*numgroup+1):ncol(data))}.
END IF.
COMPUTE yestm2 = datam2*inv(t(datam2)*datam2)*t(datam2)*y.
CORR var1 = y /var2 = yestm2.
COMPUTE ycorm2 = rPears.
COMPUTE redr2 = ycorm2**2.
!enddefine.
define PROBE (min = !charend('/') /max = !charend('/')).
COMPUTE jump = (!max - !min)/iter.
COMPUTE dim = (transtog=0)*(iter+1) + (transtog=1)*(iter-1).
COMPUTE tempres = MAKE(dim, 8, -999).
DO IF transtog = 0.
COMPUTE i2 = !min.
ELSE IF transtog = 1.
COMPUTE i2 = !min+jump.
END IF.
LOOP i = 1 to dim.
```

```
RedR center = i2.
COMPUTE tempres(i, 1:2) = {i2, redr2}.
COMPUTE i2 = i2 + jump.
END LOOP.
COMPUTE tempres(:,3) = fullr2 - tempres(:,2).
COMPUTE tempres(:,4) = (dffull*tempres(:,3))&/(dfred*(1-fullr2)).
COMPUTE tempres(:,5) = 1-FCDF(tempres(:,4), dfred, dffull).
!enddefine.
define OGRS (vars = !charend('/') /x = !charend('/') /m = !charend('/')
/y = !charend('/') /conf = !charend('/') !default(95) /convcrit =
!charend('/') !default(.00000001) /decimals = !charend('/') !default(F10.4)
/iter = !charend('/') !default(0)).
set mxloop = 10000000.
matrix.
GET allvars /variables = !vars /names = allnames /missing = OMIT.
GET xdat /variables = !x /names = xname /missing = OMIT.
GET mdat /variables = !m /names = mname /missing = OMIT.
GET ydat /variables = !y /names = yname /missing = OMIT.
COMPUTE convcrit = !convcrit.
COMPUTE conf = ! conf.
COMPUTE alpha = 1 - (conf/100).
COMPUTE covtog = (ncol(allvars) - 3 > 0).
COMPUTE N = nrow(allvars).
DO IF covtog =1.
COMPUTE covcount = 1.
COMPUTE cov = MAKE(N, ncol(allvars) - 3, 999).
COMPUTE covname = MAKE(1, ncol(allvars)-3, 999).
END TF.
COMPUTE allvars = {xdat, allvars}.
COMPUTE allvars(GRADE(allvars(:,1)),:) = allvars.
COMPUTE allvars = allvars(:,2:ncol(allvars)).
LOOP i = 1 to ncol(allnames).
DO IF (allnames(:,i) = xname).
COMPUTE x = allvars(:,i).
ELSE IF (allnames(:,i) = mname).
COMPUTE m = allvars(:,i).
ELSE IF (allnames(:,i) = yname).
COMPUTE y = allvars(:,i).
ELSE.
DO IF covtog = 1.
COMPUTE cov(:,covcount) = allvars(:,i).
COMPUTE covname(:,covcount) = allnames(:,i).
COMPUTE covcount = covcount +1.
END IF.
```

```
END IF.
END LOOP.
COMPUTE designX = design(x).
COMPUTE numgroup = ncol(designX).
COMPUTE designX = designX(:,1:(numgroup-1)).
COMPUTE xmat = MAKE(ncol(designX)+1, ncol(designX)+1, -999).
LOOP kloop = 1 to ncol(designX).
LOOP i = 1 to N.
DO IF (designx(i,kloop) = 1).
COMPUTE xmat(kloop, 1) = x(i, 1).
END IF.
END LOOP IF xmat(kloop,1) <> -999.
END LOOP.
LOOP i = 1 to N.
DO IF all(designx(i,:)=0).
COMPUTE xmat(ncol(designX)+1,:) = {x(i,1), MAKE(1,ncol(designX), 0)}.
END IF.
END LOOP if xmat(ncol(designX)+1,1) <> -999).
COMPUTE xmat(1:(numgroup-1),2:numgroup) = Ident(numgroup-1).
COMPUTE prodcol = MAKE(N, ncol(designX), 999).
LOOP i = 1 to ncol(designX).
COMPUTE prodcol(:,i) = designX(:,i)&*m.
END LOOP.
DO IF covtog = 0.
COMPUTE data = {MAKE(N,1,1), designX, m, prodcol}.
ELSE IF covtog = 1.
COMPUTE data = {MAKE(N,1,1), designX, m, prodcol, cov}.
END IF.
DO IF (!iter = 0).
COMPUTE iter = 50+10*numgroup.
ELSE.
COMPUTE iter = !iter.
END IF.
COMPUTE yest = data*inv(t(data)*data)*t(data)*y.
CORR var1 = y /var2 = yest.
COMPUTE ycor = rPears.
COMPUTE fullr2 = ycor**2.
COMPUTE dffull = N - ncol(data).
COMPUTE dfred = numgroup - 1.
COMPUTE Ffull = (fullr2*dffull)/((1-fullr2)*(ncol(data)-1)).
COMPUTE pfull = 1-FCDF(Ffull, (ncol(data)-1), dffull).
COMPUTE modres = MAKE(ncol(data), 6, -999).
COMPUTE modres(:,1) = inv(t(data)*data)*t(data)*y.
COMPUTE ssr = csum((y - yest) \& **2).
COMPUTE msr = ssr/(N-ncol(data)).
```

```
COMPUTE semat = (msr*inv(t(data)*data)).
COMPUTE modres(:,2) = (diag(semat))&**(1/2).
COMPUTE modres(:,3) = modres(:,1)&/modres(:,2).
COMPUTE modres(:,4) = 2*(1-tcdf(abs(modres(:,3)),dffull)).
COMPUTE temp = alpha/2.
CDFINVT p = temp / df = dffull.
COMPUTE tcrit = toutput.
COMPUTE modres(:,5) = modres(:,1) - tcrit*modres(:,2).
COMPUTE modres(:,6) = modres(:,1) + tcrit*modres(:,2).
DO IF covtog = 0.
COMPUTE dataint = {MAKE(N,1,1), designX, m}.
ELSE IF covtog = 1.
COMPUTE dataint = {MAKE(N,1,1), designX, m, cov}.
END IF.
COMPUTE yestint = dataint*inv(t(dataint)*dataint)*t(dataint)*y.
CORR var1 = y /var2 = yestint.
COMPUTE ycorint = rPears.
COMPUTE r2int = ycorint**2.
COMPUTE rchint = fullr2 - r2int.
COMPUTE Fint = (dffull*rchint)&/(dfred*(1-fullr2)).
COMPUTE pint = 1-FCDF(Fint, dfred, dffull).
COMPUTE intres = {rchint, Fint, dfred, dffull, pint}.
COMPUTE transtog = 0.
COMPUTE minM = cmin(m).
COMPUTE maxM = cmax(m).
PROBE min = minM /max = maxM.
COMPUTE results = tempres.
COMPUTE OGres = tempres.
COMPUTE results(nrow(results),6:7) = {0,0}.
COMPUTE i3 = 1.
LOOP IF i3 <= nrow(results).
DO IF i3 < nrow(results).
COMPUTE results(i3, 6) = 1*(results(i3,4) < results(i3+1,4)) -
1*(results(i3,4) > results(i3+1,4)).
COMPUTE results(i3, 7) = -1*((results(i3,5) < alpha) AND
(results(i3+1,5) > alpha)) + 1*((results(i3,5) > alpha) AND
(results(i3+1, 5) < alpha)).
END IF.
COMPUTE results(i3,8) = (abs(results(i3,5) - alpha) < convcrit).
DO IF i3 = nrow(results).
COMPUTE transcnv = 0.
ELSE IF i3 = 1.
COMPUTE transcnv = ((results(i3,7) = 1)AND((results(i3,8)=1)OR
(abs(results(i3+1,5) - alpha) < convcrit))).</pre>
ELSE.
```

```
COMPUTE trnscnv1 = ((results(i3,7) = 1) AND ((results(i3,8)=1) OR
 (abs(results(i3+1,5) - alpha) < convcrit))).</pre>
COMPUTE trnscnv2 = ((results(i3,7) = -1) AND ((results(i3,8)=1) OR)
 (abs(results(i3+1,5) - alpha) < convcrit))).</pre>
COMPUTE transcnv = (trnscnv1 = 1) OR (trnscnv2 = 1).
END IF.
DO IF ((abs(results(i3,7))=1)AND(transcnv = 0)).
COMPUTE trnsindx = i3.
COMPUTE transtog = 1.
COMPUTE minmtran = mmin({results(i3+1,1), results(i3,1)}).
COMPUTE maxmtran = mmax({results(i3+1,1), results(i3,1)}).
PROBE min = minmtran /max = maxmtran.
COMPUTE results = {results; tempres}.
COMPUTE results(GRADE(results(:,1)),:) = results.
ELSE.
COMPUTE i3 = i3+1.
END IF.
END LOOP.
COMPUTE numJN = 1*(results(nrow(results),8) =1) + 1*((results(1,8) = 1) AND
 (results(1,7) \iff 1)) + csum(abs(results(:,7))).
DO IF numJN > O.
COMPUTE JNSoln = MAKE(numJN,1, -999).
COMPTUE JNIndx = MAKE(numJN, 1, -999).
COMPUTE slncnt = 1.
DO IF results(nrow(results),8) = 1.
COMPUTE JNSoln(1,1) = results(nrow(results),1).
COMPUTE JNIndx(1,1) = nrow(results).
COMPUTE slncnt = slncnt +1.
END IF.
LOOP i1 = 1 to nrow(results).
DO IF abs(results(i1,7)) = 1.
COMPUTE abvblw = {results(i1,1), abs(results(i1,5)-alpha); results(i1+1, 1),
 abs(results(i1+1,5) - alpha)}.
COMPUTE minval = GRADE(abvblw(:,2)).
COMPUTE indxtog = all(abvblw(GRADE(abvblw(:,2)),:) = abvblw).
DO IF (indxtog = 1).
COMPUTE JNIndx(slncnt,1) = i1.
ELSE.
COMPUTE JNIndx(slncnt,1) = i1+1.
END IF.
COMPUTE abvblw(GRADE(abvblw(:,2)),:) = abvblw.
COMPUTE JNSoln(slncnt,1) = abvblw(1,1).
COMPUTE slncnt = slncnt+1.
END TF.
END LOOP.
```

```
END IF.
******************
PRINT /title = "
                                   Written by Amanda Montoya
                                                              ".
PRINT /title = "
                                Documentation available by request ".
***************
COMPUTE varriabs = {'X = ', 'M = ', 'Y = '}.
PRINT {xname; mname; yname} /title = "Variables:" /rnames = varrlabs
/format = A8.
DO IF covtog = 1.
PRINT {covname} /title = "Statistical Controls:" /format = A8.
END IF.
COMPUTE dummylab = {"D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9"}.
COMPUTE xmatlab = {xname, dummylab(1:(numgroup-1))}.
PRINT xmat /title = "Dummy Variable Coding Scheme:" /cnames = xmatlab.
PRINT N /title = "Sample size:".
COMPUTE modsum = {sqrt(fullr2), fullr2, Ffull, (ncol(data)-1), dffull, pfull}.
PRINT modsum /title = "Model Summary" /clabels = "R", "R-sq", "F", "df1",
"df2", "p" /format = !decimals.
COMPUTE intlab = {"Int1", "Int2", "Int3", "Int4", "Int5", "Int6", "Int7",
"Int8", "Int9"}.
COMPUTE modlabs = {"constant", dummylab(1,1:(numgroup-1)), mname,
intlab(1,1:(numgroup-1))}.
DO IF (covtog = 1).
COMPUTE modlabs = {modlabs, covname}.
END IF.
PRINT modres /title "Model" /rnames = modlabs /clabels = "coeff", "SE", "t",
"p", "LLCI", "ULCI" /format = !decimals.
COMPUTE intmat = MAKE((numgroup-1), 5, -999).
COMPUTE intmat(:,1) = t(intlab(1, 1:(numgroup-1))).
COMPUTE intmat(:,2) = MAKE((numgroup-1), 1, "=").
COMPUTE intmat(:,3) = t(dummylab(1, 1:(numgroup-1))).
COMPUTE intmat(:,4) = MAKE((numgroup-1), 1, "X").
COMPUTE intmat(:,5) = MAKE((numgroup-1), 1, mname).
PRINT intmat /title = "Interactions:" /format = A8.
PRINT intres /title = "R-square increase due to interaction(s):" /clabels =
"R2-chng" "F" "df1" "df2" "p" /format = !decimals.
DO IF (iter > 10).
COMPUTE last = nrow(OGres).
COMPUTE rjump = rnd(last/20).
```

```
COMPTUE rowsel = 1.
COMPUTE rcount = 1+rjump.
LOOP IF (rcount <= last).
COMPUTE rowsel = {rowsel, rcount}.
COMPUTE rcount = rcount + rjump.
END LOOP.
DO IF (rcount - rjump <> last).
COMPUTE rowsel = {rowsel, last}.
END IF.
END IF.
COMPUTE JNtabnam = {mname, "R2-chng", "F", "p"}.
DO IF numJN > 0.
PRINT JNSoln /title = "Moderator value(s) defining Johnson-Neyman boundaries
of significance:" /format = !decimals.
DO IF (iter > 10).
COMPUTE JNouttab = {OGres(rowsel,:); results(JNIndx, :)}.
ELSE.
COMPUTE JNouttab = {OGres(:,:);results(JNIndx,:)}.
END IF.
COMPUTE JNouttab(GRADE(JNouttab(:,1)),:) = JNouttab.
COMPUTE JNouttab = JNouttab(:, {1,3,4,5}).
PRINT JNouttab /title = "Conditional effect of X on Y at values of the
moderator (M)" /cnames = JNtabnam /format = !decimals.
ELSE.
PRINT /title = "No Johnson-Neyman bounds found within range of observed
data".
DO IF (iter > 10).
COMPUTE JNouttab = OGres(rowsel, {1,3,4,5}).
ELSE.
COMPUTE JNouttab = OGres(:, \{1, 3, 4, 5\}).
END IF.
PRINT JNouttab /title = "Conditional effect of X on Y at values of the
moderator (M)" /cnames = JNtabnam /format = !decimals.
END IF.
end matrix.
!enddefine.
restore.
```

### **Appendix B: OGRS Macro Documentation for SPSS**

OGRS VARS = xvar mvar yvar [cov1 cov2 ...] /X = xvar /M = mvar /Y = yvar [/CONF = {c}{95\*\*}] [/CONVCRIT = {cc}{.00000001\*\*}] [/ITER = {it}{0\*\*}] [/DECIMALS = {dec}{F10.4\*\*}].}

Subcommands in brackets are optional.

\*\* Default if subcommand is omitted.

### B.1 Overview

OGRS is a macro that estimates a linear regression model where the effect of the categorical independent variable (X) on the outcome (Y) is allowed to depend linearly on a moderator (M). OGRS provides all least squares regression estimates, with standard errors, t-statistics, p-values, and confidence intervals. As well, OGRS provides a test of interaction, using hierarchical regression analysis, comparing a model where the effect of X is allowed to vary linearly with M and a model where the effect of X is fixed across M. OGRS also provides a unique method for probing the effect of X on Y using an approximation of the Johnson-Neyman procedure. OGRS searches the observed range of the moderator for points at which the effect of X on Y transitions from significant to non-significant or vice versa, as specified by some level of confidence (CONF). OGRS prints the transition points if any exist within the observed range of the moderator, as well as a table of points along the moderator, statistics related to the estimated effect of X at that point, and inferential statistics for the effect of X.

### **B.2** Preparation for Use

The OGRS.sps file should be opened as a syntax file in SPSS. Once opened, execute the entire file exactly as is. Do not modify the code. Once the program is executed, the OGRS.sps file window can be closed. Once executed, access to the OGRS command is available until quitting SPSS. The OGRS.sps file must be loaded and re-executed each time SPSS is opened.

### **B.3** Model Specification

Because OGRS will only accept one variable in the X subcommand, your independent variable should be coded into one variable, with unique codes for each group. Categorical independent variables can represent groups (e.g. race, political party), experimental conditions, or any other categorical variable of interest. Both the moderator M and the outcome variable Y are treated as continuous variables. Covariates specified in the model can be continuous or dichotomous, but they cannot be categorical with more than two groups. To use categorical covariates, using your desired coding scheme (e.g. dummy coding) to create k - 1 new variables to represent your categorical covariate, and include all of these variables as covariates in the model. Covariates can be included in the **vars** subcommand, and they will be included in the regression model.

Various options in OGRS allow you to tailor the output to your question of interest. You can specify a confidence level, the convergence criteria for the Johnson-Neyman approximation, number of initial iterations in the Johnson-Neyman approximation, and the number of decimal places printed in the output. For example:

```
OGRS vars = Xvar Mvar Yvar Cov1 /conf = 90 /convcrit = .0001
/iter = 1000 /decimals = F10.6.
```

will estimate the effect of a categorical variable Xvar on Yvar moderated by Mvar. All confidence intervals will be 90% confidence intervals, and the Johnson-Neyman procedure will solve for points of transition along Mvar where the effect of Xvar on Yvar is exactly significant at  $\alpha = 0.10$ . The convergence criteria will be .0001 rather than the typical .00000001, and the Johnson-Neyman approximation will begin with 1000 iterations. All output will be printed to six decimals places.

### **B.4** Confidence Level

The c argument in the CONF subcommand specifies the confidence level for all confidence intervals and the criterion value for which the Johnson-Neyman procedure will compute the boundaries of significance. The default is 95%. Users can specify any confidence level greater than 50 and less than 100. For example CONF = 90 will result in 90% confidence intervals and for the Johnson-Neyman procedure to find the points along the moderator at which the effect of the independent variable on the outcome variable is exactly significant at  $\alpha = .10$ .

### **B.5** Convergence Criteria

The cc argument in the CONVCRIT subcommand specifies the convergence criteria for the Johnson-Neyman algorithm in finding the boundaries of significance. The default is .00000001 (up to eight decimal places in both SPSS and SAS). Users can specify any number greater than .00000001. For example CONVCRIT = .001 will mean that any solution which has a *p*-value within .001 of the specified  $\alpha$  will be considered a sufficient solution for the Johnson-Neyman boundary of significance.

### **B.6** Initial Iterations

The it argument in the ITER subcommand specifies how many initial iterations should be used in the Johnson-Neyman algorithm. The default setting says 0 but this is used as an indicator that the user wants to use the default setting which is 50 + 10kwhere k is the number of groups in the variable specified in the X subcommand. Users can specify any whole number larger than 1 for this argument. For example, ITER = 100 will result in the Johnson-Neyman algorithm dividing the range of the moderator into 100 sections in the initial search step. Users should be aware that large numbers of iterations may cause the program to run for a long time, so be patient. Additionally, very small numbers of iterations may cause the algorithm to miss potential transition points.

#### B.7 Decimals

The dec argument in the DECIMALS subcommand specifies how many decimal places are printed in the output. The default for this is F10.4. The user can specify

any format which is a valid printable numeric format (See SPSS Manual ). For example DECIMALS = F10.2 will print all outputs to two decimal places.

### Appendix C: OGRS Macro for SAS

The following is the macro code for OGRS in SAS. This code, unaltered, typed into a syntax window and run in SAS will define OGRS such that it can be used as described in this manuscript.

```
*OGRS for SPSS Version 1.1;
* Copyright 2016;
* by Amanda Kay Montoya;
* Documentation available by email to montoya.29@osu.edu;
%macro RedR (center = );
mcent = m - \&center;
m2int = mcent#data[,2:numgroup];
datam2 = J(Ninit,1,1)||mcent||m2int;
IF (covtog = 1) then datam2 = datam2||cov;
yestm2 = datam2*inv((datam2')*datam2)*datam2'*y;
ycorm2 = CORR(yestm2||y);
ycorm2 = ycorm2[1,2];
redr2 = ycorm2**2;
%mend;
%macro PROBE (min = , max = );
jump = (&max - &min)/iter;
dim = (transtog = 0)*(iter+1) + (transtog = 1)*(iter-1);
tempres = J(dim, 8, -999);
IF (transtog = 0) then i2 = &min;
IF (transtog = 1) then i2 = &min + jump;
DO i = 1 TO dim;
%RedR(center = i2);
tempres[i, 1:2] = i2||redr2;
i2 = i2 + jump;
END;
tempres[,3] = fullr2 - tempres[,2];
```

```
tempres[,4] = (dffull*tempres[,3])/(dfred*(1-fullr2));
tempres[,5] = 1 - CDF('F',tempres[,4],dfred,dffull);
%mend;
\mbox{macro OGRS} (data =, vars =, x = , m = , y = , conf = 95,
convcrit = .00000001, decimals = 10.4, iter = 0);
proc iml;
start = time();
USE &data;
READ all var{&vars} into allvars;
allnames = {&vars};
READ all var{&x} into xdat;
xname = \{\&x\};
READ all var{&m} into mdat;
mname = \{\&m\};
READ all var{&y} into ydat;
yname = \{\&y\};
convcrit = &convcrit;
conf = \&conf;
alpha = 1 - conf/100;
covtog = (ncol(allvars) - 3 > 0);
Ninit = nrow(allvars);
IF covtog=1 THEN DO;
covcount = 1;
cov = J(Ninit, ncol(allvars)-3, 999);
covname = J(1, ncol(allvars)-3, "AAAAAAAAAAAA");
END;
DO i = 1 TO ncol(allnames);
IF (allnames[,i] = xname) THEN DO;
x = allvars[,i];
END;
IF (allnames[,i] = mname) THEN DO;
m = allvars[,i];
END;
IF (allnames[,i] = yname) THEN DO;
y = allvars[,i];
END;
IF all(allnames[,i] ^= xname||mname||yname) THEN DO;
IF covtog = 1 THEN DO;
cov[,covcount] = allvars[,i];
covname[,covcount] = allnames[,i];
covcount = covcount + 1;
END;
END;
END;
```
```
designx = design(x);
numgroup = ncol(designx);
designx = designx[,1:(numgroup-1)];
xmat = J(ncol(designx)+1, ncol(designx) + 1, -999);
DO kloop = 1 TO ncol(designx);
icount = 1;
DO WHILE (xmat[kloop, 1] = -999);
IF designx[icount,kloop] = 1 THEN xmat[kloop,1] = x[icount,1];
icount = icount + 1;
END;
END;
icount = 1;
DO WHILE (xmat[ncol(designx)+1,1] = -999);
IF all(designx[icount,] = 0) THEN DO;
xmat[ncol(designx)+1,] = x[icount,1]||J(1,ncol(designX),0);
END;
icount = icount +1;
END:
xmat[1:(numgroup-1),2:numgroup] = I(numgroup-1);
prodcol = designX#m;
IF covtog = 0 THEN data = J(Ninit,1,1)||designX||m||prodcol;
IF covtog = 1 THEN data = J(Ninit,1,1)||designX||m||prodcol||cov;
yest = data*inv(data'*data)*data'*y;
ycor = corr(y||yest);
ycor = ycor[1,2];
fullr2 = ycor**2;
IF &iter = 0 THEN iter = 50+10*numgroup;
IF &iter ^= 0 THEN iter = &iter;
dffull = Ninit - ncol(data);
dfred = numgroup - 1;
Ffull = (fullr2*dffull)/((1-fullr2)*(ncol(data)-1));
pfull = 1 - CDF('F',Ffull,(ncol(data)-1),dffull);
critF = FINV(conf/100, dfred, dffull);
modres = J(ncol(data), 6, -999);
modres[,1] = inv(data'*data)*data'*y;
ssr = sum((y-yest)##2);
msr = ssr/(Ninit - ncol(data));
semat = msr*inv(data'*data);
modres[,2] = (vecdiag(semat))##(1/2);
modres[,3] = modres[,1]/modres[,2];
modres[,4] = 2*(1-CDF('t', abs(modres[,3]),dffull));
tcrit = TINV(1-alpha/2, dffull);
modres[,5] = modres[,1] - tcrit*modres[,2];
modres[,6] = modres[,1] + tcrit*modres[,2];
dataint = J(Ninit, 1,1)||designx||m;
```

```
IF (covtog = 1) THEN dataint = dataint || cov;
yestint = dataint*inv(dataint'*dataint)*dataint'*y;
ycorint = CORR(yestint||y);
ycorint = ycorint[1,2];
r2int = ycorint##2;
rchint = fullr2 - r2int;
Fint = (dffull*rchint)/(dfred*(1-fullr2));
pint = 1 - CDF('F', Fint, dfred, dffull);
intres = rchint||Fint||dfred||dffull||pint;
transtog = 0;
minM = min(m);
maxM = max(m);
%PROBE (min = minM, max = maxM);
results = tempres;
OGres = tempres;
results[nrow(results),6:7] = {0 0};
i3 = 1;
DO WHILE (i3 <= nrow(results));
IF(i3 < nrow(results)) THEN DO;
results[i3,6] = (results[i3,4] < results[i3+1,4])-(results[i3,4] >
results[i3+1,4]);
results[i3,7] = -1*((results[i3,4] > critF) & (results[i3+1,4] <
critF)) + ((results[i3,4] < critF) & (results[i3+1,4] > critF));
END;
results[i3,8] = (abs(results[i3,4] - critF) < convcrit);</pre>
IF (i3 = nrow(results)) THEN DO;
transcnv = 0;
END;
IF (i3 = 1) THEN DO;
transcnv = ((results[i3,7] = 1)&((results[i3,8]=1)|(abs(results[i3+1,8] -
critF) < convcrit)));</pre>
END;
IF ((i3 ^= nrow(results))&(i3 ^= 1))THEN DO;
trnscnv1 = ((results[i3,7] = 1) & ((results[i3,8] = 1) |
 (abs(results[i3+1,8] - critF) < convcrit)));</pre>
trnscnv2 = ((results[i3,7] = -1) & ((results[i3,8] = 1) |
 (abs(results[i3+1,8] - critF) < convcrit)));</pre>
transcnv = ((trnscnv1 = 1) | (trnscnv2 = 1));
END;
IF ((abs(results[i3,7]) = 1) \& (transcnv = 0)) THEN DO;
trnsindx = i3;
transtog = 1;
minmtran = min(results[i3+1,1]||results[i3,1]);
maxmtran = max(results[i3+1,1]||results[i3,1]);
%PROBE (min = minmtran, max = maxmtran);
```

```
results = results//tempres;
CALL sort(results,1);
END;
IF ((abs(results[i3,7]) = 0) | (transcnv = 1)) THEN i3 = i3+1;
END:
numJN = (results[nrow(results),8]=1)+((results[1,8] = 1) &
 (results[1,7] ^= 1)) + sum(abs(results[,7]));
IF (numJN > 0) THEN DO;
JNSoln = J(numJN, 1, -999);
JNIndx = J(numJN, 1, -999);
slncnt = 1;
IF (results[nrow(results),8] = 1) THEN DO;
JNSoln[1,1] = results[nrow(results),1];
JNIndx[1,1] = nrow(results);
slncnt = slncnt + 1;
END:
DO i1 = 1 to nrow(results);
IF (abs(results[i1,7]) = 1) then do;
abvblw = (results[i1,1]||abs(results[i1,4] - critF))//(results[i1+1,1]||
abs(results[i1+1,4] - critF));
unsort = abvblw;
CALL sort(abvblw,2);
JNSoln[slncnt,1] = abvblw[1,1];
indxtog = all(abvblw = unsort);
IF (indxtog = 1) THEN JNIndx[slncnt,1] = i1;
IF (indxtog = 0) THEN JNIndx[slncnt,1] = i1+1;
slncnt = slncnt + 1;
END;
END;
END;
PRINT "********************* OGRS Procedure for SAS Version 1.1
 ***********************
PRINT "Written by Amanda K. Montoya";
PRINT "Documentation available by request";
varrlabs = {"X = " "M = " "Y = "};
PRINT (xname//mname//yname) [label = "Variables:" rowname = varrlabs];
IF (covtog = 1) THEN DO;
PRINT covname [label = "Statistical Controls:"];
END;
dummylab = {"D1" "D2" "D3" "D4" "D5" "D6" "D7" "D8" "D9"};
xmatlab = xname||dummylab[1,1:(numgroup-1)];
PRINT xmat [label = "Dummy Variable Coding Scheme:" colname = xmatlab];
PRINT Ninit [label = "Sample Size:"];
```

```
PRINT yname [label = "Outcome:"];
modsum = sqrt(fullr2)||fullr2||Ffull||(ncol(data)-1)||dffull||pfull;
PRINT modsum [label = "Model Summary" colname = {"R" "R-Sq" "F" "df1" "df2"
"p"} format = &decimals];
intlab = {"Int1" "Int2" "Int3" "Int4" "Int5" "Int6" "Int7" "Int8" "Int9"};
modlabs = "Constant"||dummylab[1,1:(numgroup-1)]||mname||intlab[1,1:
(numgroup-1)];
IF (covtog = 1) THEN modlabs = modlabs||covname;
PRINT modres [label = "Model" rowname = modlabs colname = {"coeff" "SE" "t"
"p" "LLCI" "ULCI"} format = &decimals];
intmat = J((numgroup-1),5,"AAAAAAAAAAAA");
intmat[,1] = (intlab[1,1:(numgroup-1)])';
intmat[,2] = J((numgroup-1),1, "=");
intmat[,3] = (dummylab[1,1:(numgroup-1)])';
intmat[,4] = J((numgroup-1),1,"X");
intmat[,5] = J((numgroup-1), 1, mname);
PRINT intmat [label = "Interactions:"];
PRINT intres [label = "R-Square increase due to interaction(s):"
colname = {"R2-chng" "F" "df1" "df2" "p"} format = &decimals];
PRINT "******************************** JOHNSON-NEYMAN TECHNIQUE
IF (iter > 10) THEN DO;
last = nrow(OGres);
rjump = ceil(last/20);
rowsel = 1;
rcount = 1+rjump;
DO WHILE (rcount <= last);
rowsel = rowsel||rcount;
rcount = rcount +rjump;
END;
IF (rcount-rjump ^= last) THEN rowsel = rowsel||last;
END;
JNtabnam = mname||"R2-chng"||"F"||"p";
IF (numJN > 0) THEN DO;
PRINT JNSoln [label = "Moderator value(s) defining Johnson-Neyman boundaries
of significance;" format = &decimals];
IF (iter > 10) THEN DO;
JNouttab = OGres[rowsel,]//results[JNIndx,];
END;
IF (iter <= 10) THEN DO;
JNouttab = OGres//results[JNIndx,];
END:
CALL sort(JNouttab,1);
```

## Appendix D: OGRS Macro Documentation for SAS

Subcommands in brackets are optional.

\*\* Default if subcommand is omitted.

## D.1 Overview

OGRS is a macro that estimates a linear regression model where the effect of the categorical independent variable (X) on the outcome (Y) is allowed to depend linearly on a moderator (M). OGRS provides all least squares regression estimates, with standard errors, t-statistics, p-values, and confidence intervals. As well, OGRS provides a test of interaction, using hierarchical regression analysis, comparing a model where the effect of X is allowed to vary linearly with M and a model where the effect of X is fixed across M.

OGRS also provides a unique method for probing the effect of X on Y using an approximation of the Johnson-Neyman procedure. OGRS searches the observed range of the moderator for points at which the effect of X on Y transitions from significant to non-significant or vice versa, as specified by some level of confidence (CONF). OGRS prints the transition points if any exist within the observed range of the moderator, as well as a table of points along the moderator, statistics related to the estimated effect of X at that point, and inferential statistics for the effect of X.

#### D.2 Preparation for Use

The OGRS.sas file should be opened as a program file in SAS. Once opened, execute the entire file exactly as is. Do not modify the code. Once the program is executed, the OGRS.sas file window can be closed. Once executed, access to the OGRS command is available until quitting SAS. The OGRS.sas file must be loaded and re-executed each time SAS is opened.

#### D.3 Model Specification

Because OGRS will only accept one variable in the X subcommand, your independent variable should be coded into one variable, with unique codes for each group. Categorical independent variables can represent groups (e.g. race, political party), experimental conditions, or any other categorical variable of interest. Both the moderator M and the outcome variable Y are treated as continuous variables. Covariates specified in the model can be continuous or dichotomous, but they cannot be categorical with more than two groups. To use categorical covariates, using your desired coding scheme (e.g. dummy coding) to create k - 1 new variables to represent your categorical covariate, and include all of these variables as covariates in the model. Covariates can be included in the **vars** subcommand, and they will be included in the regression model.

will estimate the effect of a categorical variable Xvar on Yvar moderated by Mvar. All confidence intervals will be 90% confidence intervals, and the Johnson-Neyman procedure will solve for points of transition along Mvar where the effect of Xvar on Yvar is exactly significant at  $\alpha = 0.10$ . The convergence criteria will be .0001 rather than the typical .00000001, and the Johnson-Neyman approximation will begin with 1000 iterations. All output will be printed to six decimals places.

#### D.4 Confidence Level

The c argument in the CONF subcommand specifies the confidence level for all confidence intervals and the criterion value for which the Johnson-Neyman procedure will compute the boundaries of significance. The default is 95%. Users can specify any confidence level greater than 50 and less than 100. For example CONF = 90 will result in 90% confidence intervals and for the Johnson-Neyman procedure to find the

points along the moderator at which the effect of the independent variable on the outcome variable is exactly significant at  $\alpha = .10$ .

## D.5 Convergence Criteria

The cc argument in the CONVCRIT subcommand specifies the convergence criteria for the Johnson-Neyman algorithm in finding the boundaries of significance. The default is .00000001 (up to eight decimal places in both SPSS and SAS). Users can specify any number greater than .00000001. For example CONVCRIT = .001 will mean that any solution which has a an F-statistic within .001 of the criterion F-statistic will be considered a sufficient solution for the Johnson-Neyman boundary of significance.

## D.6 Initial Iterations

The it argument in the ITER subcommand specifies how many initial iterations should be used in the Johnson-Neyman algorithm. The default setting says 0 but this is used as an indicator that the user wants to use the default setting which is 50 + 10kwhere k is the number of groups in the variable specified in the X subcommand. Users can specify any whole number larger than 1 for this argument. For example, ITER = 100 will result in the Johnson-Neyman algorithm dividing the range of the moderator into 100 sections in the initial search step. Users should be aware that large numbers of iterations may cause the program to run for a long time, so be patient. Additionally, very small numbers of iterations may cause the algorithm to miss potential transition points.

# D.7 Decimals

The dec argument in the DECIMALS subcommand specifies how many decimal places are printed in the output. The default for this is F10.4. The user can specify any format which is a valid printable numeric format (See SAS Manual). For example DECIMALS = 10.2 will print all outputs to two decimal places.